
The Journal of Systems and Software 106 (2015) 102–116

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automated analysis of security requirements through risk-based

argumentation

Yijun Yu a,∗, Virginia N.L. Franqueira b, Thein Than Tun a, Roel J. Wieringa c, Bashar Nuseibeh a,d

a The Open University, Milton Keynes, UK
b University of Derby, Derby, UK
c University of Twente, Enschede, The Netherlands
d Lero the Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o

Article history:

Received 14 July 2014

Revised 13 April 2015

Accepted 17 April 2015

Available online 24 April 2015

Keywords:

Structured argumentation

Risk assessment

Security analysis

a b s t r a c t

Computer-based systems are increasingly being exposed to evolving security threats, which often reveal new

vulnerabilities. A formal analysis of the evolving threats is difficult due to a number of practical considerations

such as incomplete knowledge about the design, limited information about attacks, and constraints on

organisational resources. In our earlier work on RISA (RIsk assessment in Security Argumentation), we showed

that informal risk assessment can complement the formal analysis of security requirements. In this paper,

we integrate the formal and informal assessment of security by proposing a unified meta-model and an

automated tool for supporting security argumentation called OpenRISA. Using a uniform representation of

risks and arguments, our automated checking of formal arguments can identify relevant risks as rebuttals

to those arguments, and identify mitigations from publicly available security catalogues when possible. As

a result, security engineers are able to make informed and traceable decisions about the security of their

computer-based systems. The application of OpenRISA is illustrated with examples from a PIN Entry Device

case study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Security risks evolve in software-intensive systems. Attackers

exploit increasing number of vulnerabilities, ranging from crypto-

graphic protocols to human subjects. Introducing new technologies

to such systems often imposes security risks with higher likelihood

to do harm to the assets. In practice, security is not perfect due to lim-

ited resources available to security engineers, uncertainties about the

attackers’ skills and commitment, and incomplete knowledge about

evolving threats and vulnerabilities.

Recent years found structured argumentation approaches effec-

tive to build safety cases (Kelly, 1998) and to reason about both formal

and informal descriptions of software systems, to demonstrate com-

pliance to laws and regulations (Burgemeestre et al., 2010; Cyra and

Górski, 2007), to trace and justify software design decisions (Potts

and Bruns, 1988), to establish confidence in software development

(Graydon and Knight, 2008), and to build dependability cases to as-

sure compliance in software development (Huhn and Zechner, 2010).

∗ Corresponding author. Tel.: +44 1908655562.

E-mail address: y.yu@open.ac.uk (Y. Yu).

Extending the work on security argumentation (Haley et al., 2008),

we have developed a framework for reasoning about security require-

ments of the system where abstract properties are important. For in-

stance, it is possible to formally prove that an access control model

will deny access to the Human Resource (HR) database by those who

do not work in the HR department.

However, real-life phenomena could defy generalisation and ab-

straction, there the framework needs to support the uses of informal

arguments. For instance, many HR employees could share a common

password, and when one of the employees leaves the department and

the common password is not changed, thus access becomes available

to someone who is no longer a member of the HR department.

Through the use of RIsk assessment in Security Argumentation

(RISA) method (Franqueira et al., 2011), we have shown how risk

assessments iteratively challenge the satisfaction of security require-

ments. The main limitation of our previous work lies in that the sep-

arate models for formal arguments and risk-based arguments, which

hinders the automated tool support.

In this work, this limitation is addressed by the means of three

contributions of the RISA method. First, we introduce an integrated

modelling language to represent risk assessment and arguments uni-

formly. Second, the OpenRISA tool support extends the OpenArgue

(Yu et al., 2011) argumentation tool to perform automated checking

http://dx.doi.org/10.1016/j.jss.2015.04.065

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.04.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.04.065&domain=pdf
mailto:y.yu@open.ac.uk
http://dx.doi.org/10.1016/j.jss.2015.04.065


Y. Yu et al. / The Journal of Systems and Software 106 (2015) 102–116 103

Fig. 1. Syntactical elements of a problem diagram are illustrated by the “Required Behaviour” problem frame. A requirement is shown as a dotted oval, and a specification is

shown as a rectangle with double vertical strips on the left. Problem world domains are shown as rectangles. The letters on solid edges indicate the interfaces between the domain

nodes. A dotted arrow indicates the phenomena of the domain constrained by the requirement. A dotted line (not shown in this diagram) indicates the phenomena of the domain

referenced by the requirement. Abbreviations of the name of the nodes are optional.

of the formal arguments. Third, we incorporate an automated search

functionality to match catalogues of security vulnerabilities such as

CAPEC (Common Attack Pattern Enumeration and Classification pat-

terns1) and CWE (Common Weakness Enumeration2) with the key-

words derived from the arguments. Compared to the previously ad

hoc search, the new tool supports a complete coverage of these public

catalogues of security expertise.

The OpenRISA approach has presented a research contribution

to represent and reason about risks associated with software security

requirements. The argumentation part of the work has been evaluated

with an industry evaluator at DeepBlue (Yu et al., 2011).

The remainder of the paper is organised as follows. Section 2 re-

views relevant background on the satisfaction of security require-

ments and security arguments, whilst Section 3 reviews related work.

Section 4 provides an overview of the RISA method, Section 5 de-

scribes the corresponding OpenRISA tool support. Section 6 demon-

strates the tool supported method with a PIN Entry Device (PED)

example. Section 7 discusses and points to future research and devel-

opment work. Finally, Section 8 concludes.

2. Background

The RISA method builds on the notions of satisfaction of secu-

rity requirements, and outer and inner arguments, introduced by

Haley et al. (2008).

2.1. Requirements satisfaction arguments about the problem

depicted in a problem diagram

Following the Problem Frames approach in requirements engi-

neering (Jackson, 2001), software system artefacts are separated into

S, W, and R, where S represents the specification of a software system,

W represents a description of the world in which the software system

is to be used (i.e., the context), and R represents a description of the

requirements. The software within the system context should satisfy

the requirements. This semantics of a requirements problem can be

described by the following entailment relationship:

W, S � R (1)

The world context W consists of domains (short for problem world

domains); elements of the world can be either physical, such as peo-

ple and hardware, or logical, such as software and data structure.

Typically, W also contains assumptions made about these domains.

Using the Problem Frames approach (Jackson, 2001), the analy-

sis of a requirement problem follows the principles of divide-and-

conquer (i.e. decomposition) and unite-and-rule (i.e. composition).

First of all, the knowledge of the physical domains in the context di-

rectly referenced and/or constrained by the requirement statements

R are analysed, in order to bring in indirectly related domains to

the analysis until a machine specification S is found. Around S, the

collection of the domains in the physical world W are depicted in

a diagram where nodes represent the domains and edges represent

1 http://capec.mitre.org/.
2 http://cwe.mitre.org/.

the phenomena shared between the domains. A shared phenomenon

could be an event controlled by one domain and observed by another.

As such, the so-called problem context diagram, illustrated in Fig. 1,

captures the knowledge of high-level causality about the behaviour

between these domains. The OpenRISA tool includes the components

of OpenPF which support the creation of context diagrams.

2.2. Toulmin-structured arguments and argumentation processes

According to Haley et al. (2008), arguments for requirements sat-

isfaction are in two kinds: the first argument constructed, called the

outer argument, is a formal proof that relies on certain assumptions

about the system context and the specification. The outer argument

is formal in the sense that it typically uses a mathematical logic such

as the prepositional logic. The assumptions made in the outer argu-

ments are expanded in and supported by the informal inner argument

which uses the structured natural language because those assump-

tions cannot be described in the formal logic.

Effective argumentation establishes a claim that one wishes to

convince the world of. In other words, claim is the object of an ar-

gument, a statement that one wishes to convince an audience to

accept. In an effective argument, ground truths or facts need to pro-

vide the underlying support for an argument, e.g., evidence, facts, and

common knowledge. In other words, ground is a piece of evidence, a

fact, a theory, a phenomenon considered to be true. In addition, war-

rants connect and establish relevancy between the grounds and the

claim. A warrant explains how the grounds relate to the claim, but

not the validity of the grounds. Structurally, warrant is a statement

that links a ground and a claim, showing how a claim is justified by

ground(s).

Rebuttals express conditions under which an argument does not

hold by invalidating any of the grounds and associated warrants, thus

undercutting the support to the claim. Grounds and warrants may

need to be argued, making them claims of nested arguments, there-

fore grounds and warrants can also be attacked by the rebuttals. Here,

rebuttal is a counterargument which undermines the support for the

claim. Specifically in the case of security-related argumentation, re-

buttals represent risks. Rebuttals can be mitigated in order to restore

the confidence that the claim of the rebutted argument still holds. A

mitigation, while negating a rebuttal, introduces additional knowl-

edge to show that the rebuttal, i.e. a risk, can somehow be tolerated.

In doing so, a mitigation can also introduce new risks, leading to new

iterations of rebuttals and mitigations in argumentation.

Mitigating a rebuttal requires an iterative process, which intro-

duces additional arguments incrementally. The notion of round de-

notes the number of iterations from the beginning. Using the round

numbers, cyclic arguments can be avoided by eliminating the redun-

dant facts from the increments at different rounds. Specific to secu-

rity satisfaction arguments, there are two types of rebuttals, risks and

mitigations. In general the argumentation structure iteratively relates

inner arguments of logical rebuttals to outer arguments of boundary

expansions. Starting from the initial ground about the software sys-

tem in question, every round of argumentation may introduce addi-

tional facts and/or enclose more elements into the system boundary,

further the scope of the knowledge.

http://capec.mitre.org/
http://cwe.mitre.org/


Download English Version:

https://daneshyari.com/en/article/461028

Download Persian Version:

https://daneshyari.com/article/461028

Daneshyari.com

https://daneshyari.com/en/article/461028
https://daneshyari.com/article/461028
https://daneshyari.com

