
The Journal of Systems and Software 106 (2015) 132–149

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Feature extraction approaches from natural language requirements for

reuse in software product lines: A systematic literature review

Noor Hasrina Bakar a,b,∗, Zarinah M. Kasirun a, Norsaremah Salleh c

a Department of Software Engineering, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
b Department of ICT, Centre for Foundation Studies, International Islamic University Malaysia, 46350 Petaling Jaya Selangor, Malaysia
c Department of Computer Science, Kulliyyah of Information & Communication Technology, International Islamic University Malaysia, 53100 Jalan Gombak, Kuala

Lumpur, Malaysia

a r t i c l e i n f o

Article history:

Received 17 April 2014

Revised 30 April 2015

Accepted 3 May 2015

Available online 9 May 2015

Keywords:

Feature extractions

Requirements reuse

Software product lines

Natural language requirements

Systematic literature review

a b s t r a c t

Requirements for implemented system can be extracted and reused for a production of a new similar system.

Extraction of common and variable features from requirements leverages the benefits of the software product

lines engineering (SPLE). Although various approaches have been proposed in feature extractions from nat-

ural language (NL) requirements, no related literature review has been published to date for this topic. This

paper provides a systematic literature review (SLR) of the state-of-the-art approaches in feature extractions

from NL requirements for reuse in SPLE. We have included 13 studies in our synthesis of evidence and the

results showed that hybrid natural language processing approaches were found to be in common for overall

feature extraction process. A mixture of automated and semi-automated feature clustering approaches from

data mining and information retrieval were also used to group common features, with only some approaches

coming with support tools. However, most of the support tools proposed in the selected studies were not

made available publicly and thus making it hard for practitioners’ adoption. As for the evaluation, this SLR

reveals that not all studies employed software metrics as ways to validate experiments and case studies. Fi-

nally, the quality assessment conducted confirms that practitioners’ guidelines were absent in the selected

studies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software product lines engineering (SPLE) refers to software engi-

neering methods, tools, and techniques for creating a collection of

similar software systems from a shared set of software assets us-

ing a common means of production (Northrop and Clements, 2015).

These shared software assets or sometimes referred to as core assets

may include all artefacts in the product lines: requirements, archi-

tecture, codes, test plans, and more (Pohl et al., 2005). Meanwhile,

requirements reuse (RR) is the process of reusing previously defined

requirements for an earlier product and applying them to a new, sim-

ilar product. Generally, RR can produce more benefits than only the

design code reuse since it is done earlier in the software develop-

ment (Clements and Northrop, 2002). When RR was planned system-

atically in the SPLE context, several studies (Eriksson et al., 2006;

Monzon, 2008; Moros et al., 2013; Von Knethen et al., 2002) indi-

∗ Corresponding author at: Department of Software Engineering, Faculty of Com-

puter Science & Information Technology, University of Malaya, 50603 Kuala Lumpur,

Malaysia. Tel.: +60 126927506

E-mail addresses: noor.hasrina@gmail.com, noorhasrina@iium.edu.my (N.H.

Bakar), zarinahmk@um.edu.my (Z.M. Kasirun), norsaremah@iium.edu.my (N. Salleh).

cated positive improvement in software development: speed up time

to market, increase team productivity, reduce development costs in

the long run, and provide a better way of sustaining core assets’

traceability and maintainability. Software requirements can be

reused either in an ad hoc basis such as in clone and own appli-

cations, software maintenance, or when systematically planned in

SPLE. However, many problems exist when dealing with ad hoc reuse

of natural language (NL) requirements. The problems with manual

requirements reuse includes arduous (Weston et al., 2009), costly

(Niu and Easterbrook, 2008), error-prone (Ferrari et al., 2013), and

labour-intensive (Boutkova and Houdek, 2011) process, especially

when dealing with large requirements.

In the following subsections, we will briefly describe the terms

that bring together features extraction and RR in the SPLE context:

requirements versus features, core assets development in SPLE, and

the contributions of our work in SPLE.

1.1. Requirements versus features

Firstly, it is important to understand the key distinction between

software requirements and features. Software requirements describe

the functionality of a software system to be developed. The definition

http://dx.doi.org/10.1016/j.jss.2015.05.006

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.05.006&domain=pdf
mailto:noor.hasrina@gmail.com
mailto:noorhasrina@iium.edu.my
mailto:zarinahmk@um.edu.my
mailto:norsaremah@iium.edu.my
http://dx.doi.org/10.1016/j.jss.2015.05.006


N.H. Bakar et al. / The Journal of Systems and Software 106 (2015) 132–149 133

of software requirements in accordance with IEEE Standard Glossary

of Software Engineering Terminology, page 62 in IEEE Computer So-

ciety (1990) is given as:

(1) “A condition or capability needed by a user to solve a problem

or achieve an objective.

(2) A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard,

specification, or other formally imposed document.

(3) A documented representation of a condition or capability as in

1 or 2.”

The majority of requirements are written in NL (Denger et al.,

2003). This is because text is commonly used to convey information

to communicate stakeholders’ needs (Niu and Easterbrook, 2008).

Pohl et al. (2005) emphasised that in SPLE, software requirements

are documented either by using NL or model-based. As an exam-

ple, NL requirements do not only appear in the form of Software Re-

quirements Specification (SRS) format. NL requirements can also be

recorded in the forms of goals and features, product descriptions in-

cluding product brochures, user manual, or scenarios. Model-based

requirements can be recorded in the forms of functional data analysis

such as data flow diagram, UML models such as class diagram, state

dependent system behaviour and more, and they are usually supple-

mented by NL descriptions of features (Nicolás and Toval, 2009).

Meanwhile, software feature is defined as a prominent or distinc-

tive user-visible aspect, quality, or characteristic of a software system

or systems (Kang et al., 1990). In most cases, requirements tend to

be lengthy in nature, while features represent services that a system

must provide to fulfil customers’ needs, most of the time in a shorter

or precise manner. Software features tend to be more focused and

granular as compared to software requirements.

1.2. Core assets development in SPLE

Fundamentally, in SPLE, core assets (including requirements) can

be developed through three approaches: proactive, reactive, or ex-

tractive (Krueger, 1992). In the proactive approach, assets are de-

veloped prior to software development. In the reactive approach,

common and variable artefacts are iteratively developed during the

software development. Reuse in the context of extractive tends to

be in between the proactive and reactive (Krueger, 2002). To ease

the transition from single systems to software mass customisation,

Krueger proposed the extractive adoption model as a means to reuse

existing products for SPLE (Krueger, 2001). With the extractive ap-

proach, core assets are no longer created from scratch, but extracted

from the existing repository and reused in developing similar system.

The extractive approach is particularly very effective with organisa-

tions that have accumulated development experience and artefacts

in a domain and intended to quickly shift from conventional software

development to SPLE (Frakes and Kang, 2005). Niu and Easterbrook

(2008) highlighted the basic tenets of extractive approach of software

product lines (SPL) that include maximal reuse and reactive develop-

ment, particularly for small and medium-sized enterprises.

1.3. Contributions of this work in SPLE

Up to date, various research works have been produced in SPLE fo-

cusing on the product line architecture, domain analysis tools (Lisboa

et al., 2010), variability management (Chen and Ali Babar, 2011;

Metzger and Pohl, 2014), detailed design, and code reuse (Faulk,

2001). However, there are few works that looked at the extractions of

features from the requirements in SPLE (Niu and Easterbrook, 2008;

Alves et al., 2008; Kumaki et al., 2012; Davril et al., 2013). Therefore,

more parties can benefit from the formulation of feature extractions

from NL requirements when various forms of input (not only SRS)

are taken into consideration. In particular, we are interested in how

current approaches that are used to extract features from NL require-

ments can support the reuse of requirements in SPL. Additionally, we

are also looking at the implications for further research in this area.

None of the related reviews presented in Section 2 adequately cov-

ers these issues. Fig. 1 illustrates the scope of our SLR contribution in

regard to other related works in SPLE.

SPLE is a paradigm to develop software applications (software in-

tensive systems and software products) using platforms and mass

customisation (Pohl et al., 2005). Meyer and Lehnerd (1997) defined

software platforms as a set of software subsystems and interfaces that

form a common structure from which a set of derivative products can

be efficiently developed and produced. The subsystems within a plat-

form contain artefacts beyond source-codes which include require-

ments, architectures, test plans, and other items from the develop-

ment process.

SPLE is distinct from the development of a single system, in which

it involves two life cycles: domain engineering (DE) and application

engineering (AE) (Pohl et al., 2005). In DE, the reusable assets (in-

cluding requirements) are built. This is an entire process of reusing

software assets for the production of a new similar system, with

variation to meet customer demands. DE is responsible for defin-

ing and realising the commonality and the variability of software

product line. On the other hand, AE is the process where the ap-

plications of the product lines are built by reusing the domain and

exploiting the product line variability (Pohl et al., 2005). The most

important part in Fig. 1 is the domain analysis (DA), where a spe-

cific set of common and variable features from the existing require-

ment documents to be reused for developing similar product is iden-

tified. DA is the key method for realising systematic software reuse

(Frakes and Kang, 2005). It can provide a generic description of the

requirements (either in model-based or natural language form) for

that class of systems and a set of approaches for their implementation

(Kang et al., 1990).

The process of reusing requirements takes place within the DA

process and it is a part of general requirements engineering. Reuse of

software artefacts is the key aspect of SPLE. This is different to non-

SPL based methodology in Software Engineering where requirements

are gathered through elicitations of stakeholders’ needs with or with-

out using the existing documentation for similar systems. In normal

RE, reuse of requirements is not planned systematically and always

occurs in an ad hoc manner. Pohl describes Domain Design as a sub-

process within DE that refines the variability into design variability,

defining the reference architecture/platform (Pohl et al., 2005). Es-

sentially, as a result, the outcome from all sub-processes within the

DE phase should be the representation of most (if not all) possible

application for a given domain. Related literature reviews around the

DA area were numbered in Fig. 1 and its summary is presented in

Section 2.

Meanwhile, the second lifecycle, AE is concerned with the con-

figuration of a product line into one concrete product based on the

preferences and requirements of stakeholders produced in DE. Usu-

ally, the domain model produced within DE will now be used in AE. In

AE, instance software products are often derived through the consul-

tation with domain stakeholders that have specific requirements in

mind (Bagheri and Ensan, 2013). Selection of desirable features that

is now readily available should be gradually performed with ample

interaction with the stakeholders, as described by Czarnecki et al.

(2004) as staged configuration.

Various literature reviews have been published in the area of DE

and AE (as numbered in Fig. 1); however, none of the reviews re-

ported the approaches used to select features from NL requirements

for reuse in SPLE. This SLR was performed in order to obtain a better

comprehension of the current state-of-the-art in feature extraction

approaches from NL requirements for reuse in SPLE.



Download English Version:

https://daneshyari.com/en/article/461030

Download Persian Version:

https://daneshyari.com/article/461030

Daneshyari.com

https://daneshyari.com/en/article/461030
https://daneshyari.com/article/461030
https://daneshyari.com

