
The Journal of Systems and Software 99 (2015) 1–19

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

PROW: A Pairwise algorithm with constRaints, Order and Weight

Beatriz Pérez Lamanchaa,∗, Macario Polob, Mario Piattinib

a Software Testing Centre, Republic University, Montevideo, Uruguay
b Alarcos Research Group, Castilla-La Mancha University, Ciudad Real, Spain

a r t i c l e i n f o

Article history:
Received 28 November 2012
Received in revised form 23 July 2014
Accepted 2 August 2014
Available online 16 September 2014

Keywords:
Software testing
Combinatorial testing

a b s t r a c t

Testing systems with many variables and/or values is often quite expensive due to the huge number of
possible combinations to be tested. There are several criteria available to combine test data and produce
scalable test suites. One of them is pairwise. With the pairwise criterion, each pair of values of any two
parameters is included in at least one test case. Although this is a widely-used coverage criterion, two
main characteristics improve considerably pairwise: constraints handling and prioritisation.

This paper presents an algorithm and a tool. The algorithm (called PROW: Pairwise with constRaints,
Order and Weight) handles constraints and prioritisation for pairwise coverage. The tool called CTWeb
adds functionalities to execute PROW in different contexts, one of them is product sampling in Soft-
ware Product Lines via importing feature models. Software Product Line (SPL) development is a recent
paradigm, where a family of software systems is constructed by means of the reuse of a set of common
functionalities and some variable functionalities. An essential artefact of a SPL is the feature model, which
shows the features offered by the product line, jointly with the relationships (includes and excludes)
among them. Pairwise testing could be used to obtain the product sampling to test in a SPL, using fea-
tures as pairwise parameters. In this context, the constraint handling becomes essential. As a difference
with respect to other tools, CTWeb does not require SAT solvers.

This paper describes the PROW algorithm, also analysing its complexity and efficiency. The CTWeb
tool is presented, including two examples of the PROW application to two real environments: the first
corresponds to the migration of the subsystem of transactions processing of a credit card management
system from AS400 to Oracle with .NET; the second applies both the algorithm and the tool to a SPL that
monitors and controls some parameters of the load in trucks.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Software development suffers from the impossibility of exhaus-
tive testing. Thus, researchers strive to find a balance between test
suite size and coverage (e.g. the ability to find faults in the system
under test). Different test generation techniques produce different
test suites aimed at reaching a certain test data coverage criterion
(i.e. using each test datum at least once, using all pairs of values,
etc.).
Combination strategies (also called Combinatorial Interaction

Testing, CIT) are a type of test case selection method where test
cases are created by the combination of “interesting values”, which
have been previously identified by the tester.

The input is a set of parameters, each with some elements (val-
ues). The output is a set of combinations, each one composed by

∗ Corresponding author.
E-mail addresses: bperez@fing.edu.uy (B. Pérez Lamancha),

macario.polo@uclm.es (M. Polo), mario.piattini@uclm.es (M. Piattini).

one element of each input set (Grindal et al., 2005). For instance,
t-wise strategies ensure that all combinations of any t parame-
ters (input sets) are included in at least one test case (Grindal
et al., 2005). Pairwise is a particular case of t-wise, where t = 2.
In this case, the coverage criterion is that all the pairs between
the values of any two parameters are included in at least one test
case.

Fig. 1 shows the possible configuration elements of a web appli-
cation that could be executed with different options for Operating
System, Browser, Word processor and DataBase. A test suite that
achieve pairwise coverage for this example is shown in Fig. 2, which
contains all the possible combinations between pairs of values for
Operating System, Browser, Word processor and DataBase. How-
ever, this test suite does not have into account the relationship
between pairs of values, and can lead to the inclusion of many
test cases that contain semantically meaningless combinations of
test data. For the configurations in Fig. 2, the cases combining
Linux with IExplorer or Linux with Microsoft Word (test cases 1,
12, 13 and 16) make no sense. If the unfeasible test cases are
directly removed from the suite, then there will be interesting

http://dx.doi.org/10.1016/j.jss.2014.08.005
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.08.005
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.08.005&domain=pdf
mailto:bperez@fing.edu.uy
mailto:macario.polo@uclm.es
mailto:mario.piattini@uclm.es
dx.doi.org/10.1016/j.jss.2014.08.005

2 B. Pérez Lamancha et al. / The Journal of Systems and Software 99 (2015) 1–19

Fig. 1. Configuration parameters.

Fig. 2. Test cases obtained using pairwise criterion.

pairs which will remain untested: if test case 1 (Linux, Firefox,
Microsoft Word) is removed due to the incompatibility of param-
eters 1 and 3, then the pair (Firefox, Microsoft Word), which is legal
and should be tested, would be outside the testable configurations.
Then, the further removal of invalid test cases is not an efficient
solution, since valid pairs will be also removed from the test
suite.

Detecting these combinations in advance requires resorting to
the semantics of the involved parameters, i.e. what the parameters
stand for. The tools must not focus strictly on providing an algorith-
mic solution to the mathematical problem of combinatorial testing,
also account for other complementary features, which are rather
important in order to make these tools really useful in practice, such
as the ability to handle constraints on the input domains (Calvagna
and Gargantini, 2008; Grindal et al., 2005).

A recent software development paradigm where combination
testing is being applied is Software Product Line (SPL). A SPL is
“a set of software-intensive systems, sharing a common, managed
set of features that satisfy the specific needs of a particular mar-
ket segment or mission and that are developed from a common
set of core assets in a prescribed way” (Clements and Northrop,
2001). Products in an SPL share a set of characteristics (common-
alities) and differ in a number of variation points, which represent
the variabilities of the products.
Variability is a central concept in SPL development. It allows

for the generation of different products in the line by reusing core
assets. Variability is captured through features. A feature is an
increment in program functionality that customers use to distin-
guish one SPL product from another (Kang et al., 1990). A feature can
be a specific requirement, a selection among optional or alternative
requirements, or can be related to certain product implementation
or characteristics (Griss, 2000). Several documented examples of
SPL exists,1 for example the Nokia SPL where several mobile phones
share a set of common characteristics: in this case a feature can be

1 Product Line Hall of Fame: http://splc.net/fame.html.

the language, and the feature variants can be: Spanish, French, Chi-
nese, among others. Feature models are used to relate features to
each other in various ways, showing sub-features, alternative fea-
tures, optional features, dependent features or conflicting features
(Griss, 2000).

One of the main problems in SPL testing is the selection of the
products to test. From a feature model, several products can be
built, and the possible combinations of features to obtain products
can make it impossible to test all of them. One possible solu-
tion is obtaining a Product sampling set to SPL testing. To this
end, combinatorial testing strategies can be used, taking the fea-
tures as parameters and the feature variants as parameters values.
More information can be obtained from a feature model: we also
would get all the possible relationships between features (includes,
excludes) and be able to represent this with the combinatorial
technique. These relationships between features restricts the pos-
sible combination of products, for example, if a feature “excludes”
another feature, then all the products that combines the variants of
these features are meaningless, the relationships in a feature model
can be handled automatically using constraint handling. Due the
relationships in a feature model defines the products that can be
generated in the SPL, the functionality of constraints handling that
could be desirable in combinatorial testing algorithms in SPL testing
becomes essential.

The contribution of this article is twofold: first, it presents an
algorithm called PROW (Pairwise with constRaints, Order and

Weight) for generating pairwise test suites powered by domain
semantics and knowledge, which are captured through:

• Constraints: The algorithm makes it possible to exclude all the
pairs between parameter values that are semantically meaning-
less.

• Weight assignment: The algorithm is also capable of includ-
ing those pairs which require more frequent testing, assigning
a weight to each pair between parameter values, this value is
referred in this paper as “pair weight”. With this, the tester can
specify the most important pairs from a testing point of view.

• Ordering for test case prioritisation: The test suite generated
by the algorithm is ordered using the summation of the “pair
weights” involved in the test case. The ordered test suite can be
used to test planning, since the most important test cases must be
tested early. This is especially useful in regression testing, when
the time for testing is not sufficient to execute the complete test
suite.

The PROW algorithm has been implemented in a publicly available
web tool, under a GNU license called CTWeb. This is the second
contribution: CTWeb tool provides features that allow the use of
PROW efficiently and also for product sampling in SPL. Some of the
functionalities that provide for CTWeb to improve PROW include:

• Product sampling: Allows to load a feature model and automat-
ically processes the features and their relationships to obtain the
parameters to execute PROW. The result is the set of products to
be tested in the SPL.

• Setting the base test suite: Test cases obtained with combinato-
rial testing may not exactly be the most widely used in reality,
even if weight is assigned to prioritise them. This functionality
allows the tester to define a set of test cases as the basis on which
to run PROW. This base test suite is uploaded in a tab-separated
file and CTWeb mark all pairs covered by the base test suite as
visited prior to running the algorithm PROW. This functionality
can be used in both, combinatorial testing and product sampling.
The result is a set of test cases that satisfies pairwise coverage
and contains the base test suite as a subset.

http://splc.net/fame.html

Download English Version:

https://daneshyari.com/en/article/461033

Download Persian Version:

https://daneshyari.com/article/461033

Daneshyari.com

https://daneshyari.com/en/article/461033
https://daneshyari.com/article/461033
https://daneshyari.com

