

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 258 (2015) 3161-3193

www.elsevier.com/locate/jde

Extremal functions for Trudinger–Moser inequalities of Adimurthi–Druet type in dimension two

Yunyan Yang

Department of Mathematics, Renmin University of China, Beijing 100872, PR China
Received 1 November 2014; revised 27 December 2014

Available online 22 January 2015

Abstract

Combining Carleson–Chang's result [9] with blow-up analysis, we prove existence of extremal functions for certain Trudinger–Moser inequalities in dimension two. This kind of inequality was originally proposed by Adimurthi and O. Druet [1], extended by the author to high dimensional case and Riemannian surface case [40,41], generalized by C. Tintarev to wider cases including singular form [36] and by M. de Souza and J.M. do Ó [14] to the whole Euclidean space \mathbb{R}^2 . In addition to the Euclidean case, we also consider the Riemannian surface case. The results in the current paper complement that of L. Carleson and A. Chang [9], M. Struwe [35], M. Flucher [16], K. Lin [19], and Adimurthi and O. Druet [1], our previous ones [41,26], and part of C. Tintarev [36].

© 2015 Elsevier Inc. All rights reserved.

MSC: 46E35; 58J05

Keywords: Extremal function; Trudinger-Moser inequality; Blow-up analysis

1. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^2 and $W_0^{1,2}(\Omega)$ be the usual Sobolev space. The classical Trudinger–Moser inequality [44,33,32,37,30] says

 $\hbox{\it E-mail address: $yunyanyang@ruc.edu.cn.}$

$$\sup_{u \in W_0^{1,2}(\Omega), \|\nabla u\|_2 \le 1} \int_{\Omega} e^{4\pi u^2} dx < \infty. \tag{1}$$

Here and throughout this paper we denote the L^p -norm by $\|\cdot\|_p$. This inequality is sharp in the sense that for any $\alpha > 4\pi$, the integrals in (1) are still finite but the supremum is infinite. Let $u_k \in W_0^{1,2}(\Omega)$ be such that $\|\nabla u_k\|_2 = 1$ and $u_k \to u$ weakly in $W_0^{1,2}(\Omega)$. Then P.L. Lions [20] proved that for any $p < 1/(1 - \|\nabla u\|_2^2)$, there holds

$$\limsup_{k \to \infty} \int_{\Omega} e^{4\pi p u_k^2} dx < \infty. \tag{2}$$

This inequality gives more information than the Trudinger–Moser inequality (1) in case $u \not\equiv 0$. While in case $u \equiv 0$, it is weaker than (1). However Adimurthi and O. Druet [1] proved that for any α , $0 \le \alpha < \lambda_1(\Omega)$,

$$\sup_{u \in W_0^{1,2}(\Omega), \|\nabla u\|_2 \le 1} \int_{\Omega} e^{4\pi u^2 (1+\alpha \|u\|_2^2)} dx < \infty, \tag{3}$$

and that the supremum is infinity when $\alpha \ge \lambda_1(\Omega)$, where $\lambda_1(\Omega)$ is the first eigenvalue of the Laplacian operator with respect to Dirichlet boundary condition. For any sequence of functions $u_k \in W_0^{1,2}(\Omega)$ with $\|\nabla u_k\|_2 = 1$ and $u_k \rightharpoonup u$ weakly in $W_0^{1,2}(\Omega)$, if $u \not\equiv 0$, it then follows from (3) that for any α , $0 \le \alpha < \lambda_1(\Omega)$,

$$\limsup_{k \to \infty} \int_{\Omega} e^{4\pi u_k^2 (1+\alpha \|u_k\|_2^2)} dx < \infty. \tag{4}$$

Note that $1 + \alpha \|u_k\|_2^2 < 1 + \|\nabla u\|_2^2 < 1/(1 - \|\nabla u\|_2^2)$ for sufficiently large k. (4) is weaker than (2). If $u \equiv 0$, we already see that (2) is weaker than (1), and obviously (4) is stronger than (1).

A natural question is to find the high dimensional analogue of (3). Let Ω be a smooth bounded domain in \mathbb{R}^n $(n \ge 3)$. We proved in [40] that for any $0 \le \alpha < \lambda_1(\Omega)$,

$$\sup_{u \in W_0^{1,n}(\Omega), \|\nabla u\|_n^n \le 1} \int_{\Omega} e^{\alpha_n |u|^{\frac{n}{n-1}} (1+\alpha \|u\|_n^n)^{\frac{1}{n-1}}} dx < \infty, \tag{5}$$

and that the supremum is infinite when $\alpha \ge \lambda_1(\Omega)$, where $\alpha_n = n\omega_{n-1}^{1/(n-1)}$, ω_{n-1} is the area of the unit sphere in \mathbb{R}^n , and $\lambda_1(\Omega)$ is defined by

$$\lambda_1(\Omega) = \inf_{u \in W_0^{1,n}(\Omega), \ u \neq 0} \frac{\int_{\Omega} |\nabla u|^n dx}{\int_{\Omega} |u|^n dx}.$$

Trudinger–Moser inequalities on Riemannian manifolds were due to T. Aubin [7], J. Moser [30], P. Cherrier [12,13], and L. Fontana [17]. Also a few results was recently obtained, on complete noncompact Riemannian manifolds, by G. Mancini and K. Sandeep [27,28] and the

Download English Version:

https://daneshyari.com/en/article/4610340

Download Persian Version:

https://daneshyari.com/article/4610340

<u>Daneshyari.com</u>