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1. Introduction

In this article we consider the unique continuation principle for the Ostrovsky equation with neg-
ative dispersion

du4oou— o lu+udu=0, xeR, teR. (11)

Here d; 'u is a spatial antiderivative of u which is defined through the Fourier transform by the
multiplier —i/&. This equation is a perturbation of the well-known Korteweg-de Vries (KdV) equation
with the nonlocal term —8;111 and it was introduced in [11] as a model to describe the propagation
of dispersive one-dimensional waves in a rotating frame of reference. Regarding the well-posedness of
the Cauchy problem associated to Eq. (1.1), in the context of Sobolev spaces H*(R), it is known that
the problem is locally well-posed for s > —% [7] and globally well-posed for s > —% [6].

Our purpose is to give sufficient conditions for the difference of two solutions u; and uy of (1.1)
which guarantee that both solutions are identical. The study of continuation properties has been
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considered for a wide variety of dispersive equations. In [13], for a general class of dispersive equa-
tions, Saut and Scheurer proved that if a solution u = u(x,t), x € R", t € R, of an equation in such
class, vanishes in an open set £2 C R" x R, then it vanishes in all the horizontal components of £2,
that is, in R™ x {t: 3Ix with (x, t) € £2}. Using methods of Complex Analysis, in [1] Bourgain showed
that if a solution of the Korteweg-de Vries equation has a common compact support for all times in a
nontrivial interval, then the solution is the zero solution. Though weaker than the result in [13], Bour-
gain’s result was easily generalized to other dispersive equations not belonging to the class considered
in [13]. (See for example [12].)

In [8], for the KdV equation, Kenig, Ponce, and Vega considered conditions, only at two different
times, on the support of a solution u, proving that if this solution is supported in an interval (—oo, B]
at t =0 and t =1, then u = 0. A similar result was obtained in [9] for the difference of two solutions
uq and u;. This type of conditions, imposed on the supports, has been replaced in subsequent articles
by hypotheses on the spatial decay at infinity of the difference v :=uy — uy, which guarrantee that
both solutions are identical. (See [5], and [4] for the KdV and Schrédinger equations, respectively.)
This decay is related to the natural decay of the fundamental solution of the equation.

For the Ostrovsky equation with positive dispersion (with “+” sign in the nonlocal term in (1.1)), it
was proved in [2], that if for all a > 0 the difference u; —uy of two solutions decays, roughly speaking,
as e‘“"3/2, for x > 0, then u; = us.

The main result we will establish in this article is the following:

Theorem 1. Let uq,u; € C([0,1]; H4(R)) N C1([0, 1]; LZ(R)) N L%°([0, 11; L>((1 + x4)%Y dx)), for some
y > 1, be two solutions of (1.1) and define v :=u; — uy.

Suppose that v(0), v(1) € L2(ea"-s+/5 dx) for alla > 0. Then v = 0. (Here, x4 := %(X + 1x).)

The proof of Theorem 1, which follows the ideas of [5], is obtained by superposing two types of
estimates: Carleman type estimates, and a lower estimate. The Carleman estimates express bounded-
ness properties of the inverse of the operator associated to the linear part of the equation in spaces of
LPL9 type with exponential weight. The lower estimate bounds the L%-norm of v in a small rectangle
at the origin with a Sobolev norm of v in a sufficiently distant region.

The Carleman estimates we present here, stated in Theorem 4 below, are simple in the sense that
they are established only in spaces LPLY with p,q € {1, 2, 0o} and are proved by means of elemen-
tary properties of the Fourier transform without appealing explicitly to the smoothing effects of the
linearized equation or to more advanced tools in Harmonic Analysis like the L2-boundedness of the
maximal function associated to the inverse Fourier Transform [10,3] used in [5] and [2].

As far as the lower estimate is concerned, contrary to the case of the equation with positive
dispersion, the sign of the nonlocal term in (1.1) does not favor a straightforward derivation of this
estimate (Theorem 7, below). For this reason, for the equation with negative dispersion it is necessary
to require a decay hypothesis stronger than that in [2]. However, we must point out that, as it was
proved in [14], the fundamental solution of the Ostrovsky equation with negative dispersion decays
as e~ as x — 400, and thus we are not able to assure the sharpness of our result.

The article is organized as follows: In Section 2 we prove that the exponential decay of the initial
data is preserved in time, a necessary aspect in the application of the Carleman estimates, which
are obtained in Section 3. In Section 4 we prove the lower estimate. Finally in Section 5 we prove
Theorem 1.

We finish this introduction with some comments about the operator ;' and the notations. If
a function f € L2 =L?(R) is such that ;' f := F~'(f(§)/i£) € L>(R), then it is easy to see that
f_oooo f(x)dx =0 in the generalized sense (here ~and F~! denote respectively the Fourier transform
and its inverse), and in this case 9, 1f has a continuous representative given by

X o

o f) = / f(x’)dx/:—/f(x’)dx/, xeR. (1.2)
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