

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Asymptotic stability at infinity for bidimensional Hurwitz vector fields $\stackrel{\text{\tiny{$ؿ$}}}{=}$

Roland Rabanal¹

Departamento de Ciencias, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Peru

ARTICLE INFO

Article history: Received 16 January 2013 Revised 24 April 2013 Available online 22 May 2013

MSC: primary 37E35, 37C10 secondary 26B10, 58C25

Keywords: Injectivity Reeb component Asymptotic stability Planar vector fields

ABSTRACT

Let $X : U \to \mathbb{R}^2$ be a differentiable vector field. Set $Spc(X) = \{$ eigenvalues of $DX(z): z \in U \}$. This X is called Hurwitz if $Spc(X) \subset \{z \in \mathbb{C}: \Re(z) < 0\}$. Suppose that X is Hurwitz and $U \subset \mathbb{R}^2$ is the complement of a compact set. Then by adding to X a constant v one obtains that the infinity is either an attractor or a repellor for X + v. That means: (i) there exists a unbounded sequence of closed curves, pairwise bounding an annulus the boundary of which is transversal to X + v, and (ii) there is a neighborhood of infinity with unbounded trajectories, free of singularities and periodic trajectories of X + v. This result is obtained after to proving the existence of $\tilde{X} : \mathbb{R}^2 \to \mathbb{R}^2$, a topological embedding such that \tilde{X} equals X in the complement of some compact subset of U.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A basic example of non-discrete dynamics on the Euclidean space is given by a linear vector field. This linear system is infinitesimally hyperbolic if every eigenvalue has nonzero real part, and it has well-known properties [16,3]. For instance, when the real part of its eigenvalues are negative (Hurwitz matrix), the origin is a global attractor rest point. In the nonlinear case, there has been a great interest in the local study of vector fields around their rest points [6,27,7,28]. However, in order to describe a global phase-portrait, as in [22,25,5,8,9] it is absolutely necessary to study its behavior in a neighborhood of infinity [19].

0022-0396/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jde.2013.04.037

This paper was written when the author served as an Associate Fellow at ICTP-ITALY. E-mail address: rrabanal@pucp.edu.pe.

¹ The author was partially supported by PUCP-PERU (DGI: 70242-2010).

The Asymptotic Stability at Infinity has been investigated with a strong influence of [18], where Olech showed a connection between stability and injectivity (see also [10,4,11,26,22]). This problem was also researched in [19,12,14,15,23,1]. In [12], Gutierrez and Teixeira consider C^1 -vector fields $Y: \mathbb{R}^2 \to \mathbb{R}^2$, the linearizations of which satisfy (i) $\det(DY(z)) > 0$ and (ii) $\operatorname{Trace}(DY(z)) < 0$ in a neighborhood of infinity. By using [9], they prove that if Y has a rest point and the Index $\mathcal{I}(Y) = \int \text{Trace } (DY) < 0 \text{ (resp. } \mathcal{I}(Y) \ge 0), \text{ then } Y \text{ is topologically equivalent to } z \mapsto -z \text{ that is "the } U$ infinity is a repellor" (resp. to $z \mapsto z$ that is "the infinity is an attractor"). This Gutierrez-Teixeira's paper was used to obtain the next theorem, where $Spc(Y) = \{eigenvalues of DY(z): z \in \mathbb{R}^2 \setminus \overline{D}_{\sigma}\}$, and $\Re(z)$ is the real part of $z \in \mathbb{C}$.

Theorem 1 (*Gutierrez–Sarmiento*). Let $Y : \mathbb{R}^2 \setminus \overline{D}_{\sigma} \to \mathbb{R}^2$ be a C^1 -map, where $\sigma > 0$ and $\overline{D}_{\sigma} = \{z \in \mathbb{R}^2 \mid z \in \mathbb{R}^2 \mid z \in \mathbb{R}^2\}$ \mathbb{R}^2 : $||z|| \leq \sigma$ }. The following is satisfied:

- (i) If for some $\varepsilon > 0$, Spc(Y) $\cap (-\varepsilon, +\infty) = \emptyset$. Then there exists $s \ge \sigma$ such that the restriction Y |: $\mathbb{R}^2 \setminus \overline{D}_s \to \mathbb{R}^2$ is injective.
- (ii) If for some $\varepsilon > 0$, the spectrum Spc(Y) is disjoint of the union $(-\varepsilon, 0] \cup \{z \in \mathbb{C}: \Re(z) \ge 0\}$. Then there exist $p_0 \in \mathbb{R}^2$ such that the point ∞ of the Riemann Sphere $\mathbb{R}^2 \cup \{\infty\}$ is either an attractor or a repellor of $z' = Y(z) + p_0$.

Theorem 1, given in [14], has been extended to differentiable maps $X : \mathbb{R}^2 \setminus \overline{D}_{\sigma} \to \mathbb{R}^2$ in [13,15]. In both papers the eigenvalues also avoid a real open neighborhood of zero. In [23], the author examine the intrinsic relation between the asymptotic behavior of Spc(X) and the global injectivity of the local diffeomorphism given by *X*. He uses $Y_{\theta} = R_{\theta} \circ Y \circ R_{-\theta}$, where R_{θ} is the linear rotation of angle $\theta \in \mathbb{R}$, and (motivated by [11]) introduces the so-called *B*-condition [24,26], which claims:

for each $\theta \in \mathbb{R}$, there does not exist a sequence $(x_k, y_k) \in \mathbb{R}^2$ with $x_k \to +\infty$ such that $Y_{\theta}((x_k, y_k)) \to \infty$ $p \in \mathbb{R}^2$ and $DY_{\theta}(x_k, y_k)$ has a real eigenvalue λ_k satisfying $x_k \lambda_k \to 0$.

By using this, [23] improves the differentiable version of Theorem 1. In the present paper we prove that the condition

$$\operatorname{Spc}(X) \subset \{z \in \mathbb{C}: \Re(z) < 0\}$$

is enough in order to obtain Theorem 1 for differentiable vector fields $X : \mathbb{R}^2 \setminus \overline{D}_{\sigma} \to \mathbb{R}^2$.

Throughout this paper, \mathbb{R}^2 is embedded in the Riemann Sphere $\mathbb{R}^2 \cup \{\infty\}$. Thus $(\mathbb{R}^2 \setminus \overline{D}_{\sigma}) \cup \{\infty\}$ is the subspace of $\mathbb{R}^2 \cup \{\infty\}$ with the induced topology, and 'infinity' refers to the point ∞ of $\mathbb{R}^2 \cup \{\infty\}$. Moreover given $C \subset \mathbb{R}^2$, a closed (compact, no boundary) curve (1-manifold), $\overline{D}(C)$ (respectively D(C)) is the compact disc (respectively open disc) bounded by C. Thus, the boundaries $\partial \overline{D}(C)$ and $\partial D(C)$ are equal to *C*, homeomorphic to $\partial D_1 = \{z \in \mathbb{R}^2 : ||z|| = 1\}$.

2. Statement of the results

For every $\sigma > 0$ let $\overline{D}_{\sigma} = \{z \in \mathbb{R}^2 : ||z|| \leq \sigma\}$. Outside this compact disk we consider a differentiable vector field $X: \mathbb{R}^2 \setminus \overline{D}_{\sigma} \to \mathbb{R}^2$. As usual, a trajectory of X starting at $q \in \mathbb{R}^2 \setminus \overline{D}_{\sigma}$ is defined as the integral curve determined by a maximal solution of the Initial Value Problem $\dot{z} = X(z), z(0) = q$. This is a curve $I_q \ni t \mapsto \gamma_q(t) = (x(t), y(t))$, satisfying:

- *t* varies on some open real interval containing the zero, the image of which $\gamma_q(0) = q$;
- $\gamma_q(t) \in \mathbb{R}^2 \setminus \overline{D}_\sigma$ and there exist the real derivatives $\frac{dx}{dt}(t)$, $\frac{dy}{dt}(t)$;
- $\dot{\gamma}_q(t) = (\frac{dx}{dt}(t), \frac{dy}{dt}(t))$, the velocity vector field of γ_q at $\gamma_q(t)$ equals $X(\gamma_q(t))$, and $I_q \subset \mathbb{R}$ is the maximal interval of definition.

Download English Version:

https://daneshyari.com/en/article/4610378

Download Persian Version:

https://daneshyari.com/article/4610378

Daneshyari.com