
The Journal of Systems and Software 99 (2015) 85–96

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Enhanced fixed-priority real-time scheduling on multi-core platforms
by exploiting task period relationship�

Ming Fana, Qiushi Hana,∗, Shuo Liua, Shaolei Rena,c, Gang Quana, Shangping Renb

a Department of Electrical and Computer Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, United States
b Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616, United States
c School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street, ECS 350, Miami, FL 33199, United States

a r t i c l e i n f o

Article history:
Received 1 May 2014
Received in revised form 2 September 2014
Accepted 4 September 2014
Available online 16 September 2014

Keywords:
Partitioned scheduling
RMS
Harmonic

a b s t r a c t

One common approach for multi-core partitioned scheduling problem is to transform this problem into
a traditional bin-packing problem, with the utilization of a task being the “size” of the object and the
utilization bound of a processing core being the “capacity” of the bin. However, this approach ignores
the fact that some implicit relations among tasks may significantly affect the feasibility of the tasks
allocated to each local core. In this paper, we study the problem of partitioned scheduling of periodic
real-time tasks on multi-core platforms under the Rate Monotonic Scheduling (RMS) policy. We present
two effective and efficient partitioned scheduling algorithms, i.e. PSER and HAPS, by exploiting the fact
that the utilization bound of a task set increases as task periods are closer to harmonic on a single-core
platform. We formally prove the schedulability of our partitioned scheduling algorithms. Our extensive
experimental results demonstrate that the proposed algorithms can significantly improve the scheduling
performance compared with the existing work.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Multi-core architecture has been widely accepted as the most
important technology in the future industrial market. By provid-
ing multiple processing cores on a single chip, multi-core systems
can significantly increase the computing performance while relax-
ing the power requirement over traditional single-core systems.
Most of the major chip manufactures have already launched multi-
core chips into the market, i.e. AMD OpteronTM 6300 Series (AMD,
2013). It is not surprising that in the coming future, hundreds or
even thousands of cores will be integrated into a single chip (Yeh
et al., 2008). The quickly emerging trend towards multi-core plat-
form brings urgent needs for effective and efficient techniques for
the design of different types of computing systems, e.g. real-time
systems.

One major problem in the design of multi-core real-time system
is how to utilize the available computing resources most efficiently
while satisfying the timing constraints of all real-time tasks. To

� This work is supported in part by NSF under projects CNS-0969013, CNS-
1423137, CAREER-0746643, CNS-1018731, CNS-0917021 and CNS-1018108.

∗ Corresponding author. Tel.: +1 3059151789.
E-mail addresses: mfan001@fiu.edu (M. Fan), qhan001@fiu.edu (Q. Han),

sliu005@fiu.edu (S. Liu), sren@cs.fiu.edu (S. Ren), ganquan@fiu.edu (G. Quan),
ren@iit.edu (S. Ren).

address this problem, one effective way is to develop an appropri-
ate scheduling algorithm, which plays one of the most significant
roles in real-time operating systems.

It is well known that the scheduling problem for multi-core
systems is an NP-hard problem (Shin and Ramanathan, 1994).
Although there exists optimal scheduling algorithms on single-core
systems, i.e. Rate Monotonic Scheduling (RMS) and Earliest Deadline
First (EDF) (Liu and Layland, 1973), none of them are optimal any
more (Dhall and Liu, 1978) for multi-core systems. The reason is
that, different from single-core scheduling, the multi-core sched-
uling needs to decide not only when but also where to execute a
real-time task. Therefore, developing a sub-optimal heuristic for
scheduling strategy on multi-core systems is reasonable and prac-
tical.

In this paper, we are interested in studying the problem of par-
titioned scheduling for periodic tasks on multi-core systems under
RMS policy. Compared with the existing works on fixed-priority
partitioned scheduling, we have made a number of contributions:

• We develop two new partitioned scheduling algorithms for fixed-
priority periodic real-time tasks by taking the relationship among
task periods into consideration. The first algorithm, namely Par-
titioned Scheduling with Enhanced RBound (PSER), improves the
traditional R-Bound by applying a more flexible task set scal-
ing method (i.e. TSS method) and then partitions tasks under

http://dx.doi.org/10.1016/j.jss.2014.09.010
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.09.010
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.09.010&domain=pdf
mailto:mfan001@fiu.edu
mailto:qhan001@fiu.edu
mailto:sliu005@fiu.edu
mailto:sren@cs.fiu.edu
mailto:ganquan@fiu.edu
mailto:ren@iit.edu
dx.doi.org/10.1016/j.jss.2014.09.010

86 M. Fan et al. / The Journal of Systems and Software 99 (2015) 85–96

the enhanced utilization bound (i.e. RBounden). The second one,
namely Harmonic Aware Partition Scheduling (HAPS), captures the
“degree” of harmonic for a set of tasks with a novel harmonic met-
ric (i.e. harmonic index) and then makes the partitioning decision
such that tasks with closer harmonic relationship can be allocated
to the same core.

• We analytically prove that both of our proposed partitioned
scheduling algorithms, i.e. PSER and HAPS, can guarantee the
schedulability of any task set that can successfully pass the par-
titioning procedure.

• We conduct extensive experiments to evaluate the performance
of our proposed techniques. Through the experimental results,
we can see that our proposed algorithms can significantly
improve the scheduling performance compared with the existing
works.

The rest of the paper is organized as follows. Section 2 intro-
duces the work closely related to this paper. Section 3 describes the
system models and Section 4 presents our motivational examples
for this work. Section 5 and 6 present two partitioned scheduling
algorithms we developed. Experiments and results are discussed in
Section 7, and we conclude this work in Section 8.

2. Related work

In partitioned multi-core scheduling problem, the schedulabil-
ity for tasks allocated on each processor can be determined based on
feasibility conditions on single processors. To search for the optimal
task partition for multiple processors is essentially a design space
exploration problem, with complexity increasing rapidly with the
size of the problem (e.g. the numbers of tasks or processors). How to
quickly and accurately evaluate the schedulability of a design alter-
native (i.e. task partition) is key to the success of the partitioned
multi-core scheduling problem. As a result, while there exists exact
timing analysis method for feasibility checking for tasks on a single
core platform (Liu and Layland, 1973; Kuo and Mok, 1991; Lauzac
et al., 1998), they are not commonly used for partitioned multi-core
scheduling problem due to their large computational complexity.
Instead, many other timing-efficient feasibility checking methods,
such as the utilization-bound based feasibility checking methods,
are commonly used in the search for task partitions for multi-core
scheduling problem.

2.1. Different utilization bounds for single-core systems

A utilization bound f(�) for a task set � is a function of the param-
eters of � , and can be used to determine the schedulability of �
under certain specific scheduling policy (e.g. RMS). By applying the
parameters of � into f(�), all tasks in � can be guaranteed to meet
their deadlines if the task set utilization (denoted as U(�)) is no
more than that parametric utilization bound, i.e. U(�) ≤ f(�). Note
that U(�) can be calculated by summing up the task utilizations of
all tasks in the task set � , where a task utilization is the ratio of its
execution time over its period.

For single-core systems, there are several utilization bounds
proposed under RMS policy (Liu and Layland, 1973; Kuo and Mok,
1991; Lauzac et al., 1998).

• LLBound (Liu and Layland, 1973): The LLBound is a function with
respect to the number of tasks, and is formulated as

LLBound(�) = N(21/N − 1), (1)

where N is the number of tasks in the task set � . When N goes to
infinity, the LLBound achieves its worst-case as 69%.

• KBound (Kuo and Mok, 1991): The KBound has a similar form as
the LLBound, and is formulated as

KBound(�) = K(21/K − 1), (2)

where K, instead of being the number of all tasks as that used by
LLBound, is the number of tasks in original task sets such that no
two tasks are completely harmonic.

• RBound (Lauzac et al., 1998): The RBound takes not only the
number of tasks but also the relationship among periods into
consideration, i.e.

RBound(�) = (N − 1)(r1/N−1 − 1) + 2/r − 1, (3)

where N is the number of tasks in the task set, and r is the ratio
between the maximum and minimum periods and need to satisfy
1 ≤ r < 2.

• CBound (Han and Tyan, 1997): The CBound is the utilization bound
for a harmonic task set, in which the periods of any two tasks being
integer multiple of each other, i.e.

CBound(�) = 1, (4)

where � is a harmonic task set.

Among all four utilization bounds shown in the above, it has
been proved that for RMS-based single-core scheduling, the RBound
and CBound are higher than the other two (i.e. the LLBound and the
KBound) (Lauzac et al., 1998; Han and Tyan, 1997). However, these
two utilization bounds (RBound or CBound) have critical limitations.
The RBound can only be applied when a given task set satisfies the
period constraint (i.e. 1 ≤ r < 2), while the CBound can only be used
directly to harmonic task sets. Hence, in order to use the RBound
or CBound for checking the schedulability of an arbitrary task set,
we need to first transform the task set appropriately such that it
satisfies the required condition.

For RBound, there are a few methods proposed to transform a
task set to satisfy the condition of 1 ≤ r < 2, such as Lauzac et al.
(1998) and Kandhalu et al. (2012). In particular, Lauzac et al. (1998)
proposed a task set scaling method by scaling all tasks with respect
to the maximum period. Specifically, given a task set � , ∀�i ∈ � , the
period as well as the execution time of �i was scaled by{

C ′
i
= Ci · 2�log(Tmax/Ti)�

T ′
i
= Ti · 2�log(Tmax/Ti)�

(5)

where Tmax represents the maximum period among all tasks. Their
method scaled all task periods with respect to, but no larger than
Tmax. They formally proved that as long as the scaled task set is
feasible then the original task set is also feasible.

Kandhalu et al. (2012) presented another method by scaling the
task set with respect to the minimum period. Specifically, given a
task set � , ∀�i ∈ � , the period and the execution time of �i was
scaled by{

C ′
i
= Ci/�(Ti/Tmin)�

T ′
i
= Ti/�(Ti/Tmin)�

(6)

where Tmin is the minimum period among all tasks. This method
scaled all task periods with respect to, but no smaller than Tmin.
However, this approach cannot always guarantee the schedula-
bility of the original task set even when the scaled task set is
schedulable. For example, consider a task set � consisting of four
tasks with execution time and periods as {(3,24), (32,100),(40,135)}
and (15,140). According to the scaling method introduced in
Kandhalu et al. (2012), we can transform the task set to a new task
set � ′ as {(3,24),(8,25),(8,27),(3,28)}. It is not difficult to verify that
the new task set � ′ is schedulable while the original task set � is
not schedulable.

Download English Version:

https://daneshyari.com/en/article/461038

Download Persian Version:

https://daneshyari.com/article/461038

Daneshyari.com

https://daneshyari.com/en/article/461038
https://daneshyari.com/article/461038
https://daneshyari.com

