

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 257 (2014) 4087-4107

www.elsevier.com/locate/jde

Regularity of the extremal solutions associated to elliptic systems *

Craig Cowan^{a,*}, Mostafa Fazly^b

^a Department of Mathematics, 342 Machray Hall, 186 Dysart Road, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

^b Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

Received 3 December 2012; revised 10 February 2014

Available online 21 August 2014

Abstract

We examine the two elliptic systems given by

$$(G)_{\lambda,\gamma} \qquad -\Delta u = \lambda f'(u)g(v), \qquad -\Delta v = \gamma f(u)g'(v) \quad \text{in } \Omega,$$

and

 $(H)_{\lambda,\gamma} \qquad -\Delta u = \lambda f(u)g'(v), \qquad -\Delta v = \gamma f'(u)g(v) \quad \text{in } \Omega,$

with zero Dirichlet boundary conditions and where λ , γ are positive parameters. We show that for general nonlinearities f and g the extremal solutions associated with $(G)_{\lambda,\gamma}$ are bounded, provided Ω is a convex domain in \mathbb{R}^N where $N \leq 3$. In the case of a radial domain, we show the extremal solutions are bounded provided N < 10. The extremal solutions associated with $(H)_{\lambda,\gamma}$ are bounded in the case where f is a general nonlinearity, $g(v) = (v+1)^q$ for $1 < q < \infty$ and when Ω is a bounded convex domain in \mathbb{R}^N for $N \leq 3$. Certain regularity results are also obtained in higher dimensions for $(G)_{\lambda,\gamma}$ and $(H)_{\lambda,\gamma}$ for the case of explicit nonlinearities of the form $f(u) = (u+1)^p$ and $g(v) = (v+1)^q$. (© 2014 Elsevier Inc. All rights reserved.

Keywords: Elliptic systems; Extremal solutions; Stable solutions; Regularity of solutions; Radial solutions

Corresponding author.

^{*} The second author is pleased to acknowledge the support of a University of Alberta Start-up Grant RES0019810 and National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RES0020463.

E-mail addresses: Craig.Cowan@umanitoba.ca (C. Cowan), fazly@ualberta.ca (M. Fazly).

http://dx.doi.org/10.1016/j.jde.2014.08.002

^{0022-0396/© 2014} Elsevier Inc. All rights reserved.

1. Introduction

We examine the following systems:

$$(G)_{\lambda,\gamma} \qquad \begin{cases} -\Delta u = \lambda f'(u)g(v) \quad \Omega\\ -\Delta v = \gamma f(u)g'(v) \quad \Omega,\\ u = v = 0 \qquad \partial \Omega \end{cases}$$

and

$$(H)_{\lambda,\gamma} \qquad \begin{cases} -\Delta u = \lambda f(u)g'(v) & \Omega\\ -\Delta v = \gamma f'(u)g(v) & \Omega,\\ u = v = 0 & \partial \Omega \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^N and $\lambda, \gamma > 0$ are positive parameters. The nonlinearities f and g will satisfy various properties but will always at least satisfy

(*R*) f is smooth, increasing and convex with f(0) = 1 and f superlinear at ∞ .

We begin by recalling the scalar analog of the above systems. Given a nonlinearity f which satisfies (R), the following equation

$$(Q)_{\lambda} \qquad \begin{cases} -\Delta u = \lambda f(u) & \Omega\\ u = 0 & \partial \Omega \end{cases}$$

is now quite well understood whenever Ω is a bounded smooth domain in \mathbb{R}^N . See, for instance, [1-5,8,10,12,15]. We now list the properties one comes to expect when studying $(Q)_{\lambda}$. It is well known that there exists a critical parameter $\lambda^* \in (0, \infty)$, called the extremal parameter, such that for all $0 < \lambda < \lambda^*$ there exists a smooth, minimal solution u_{λ} of $(Q)_{\lambda}$. Here the minimal solution means in the pointwise sense. In addition for each $x \in \Omega$ the map $\lambda \mapsto u_{\lambda}(x)$ is increasing in $(0, \lambda^*)$. This allows one to define the pointwise limit $u^*(x) := \lim_{\lambda \neq \lambda^*} u_{\lambda}(x)$ which can be shown to be a weak solution, in a suitably defined sense, of $(Q)_{\lambda^*}$. For this reason u^* is called the extremal solution. It is also known that for $\lambda > \lambda^*$ there are no weak solutions of $(Q)_{\lambda}$. Also one can show the minimal solution u_{λ} is a semi-stable solution of $(Q)_{\lambda}$ in the sense that

$$\int_{\Omega} \lambda f'(u_{\lambda}) \psi^{2} \leq \int_{\Omega} |\nabla \psi|^{2}, \quad \forall \psi \in H_{0}^{1}(\Omega).$$

A question that has attracted a lot of attention is the regularity of the extremal solution. It is known that the extremal solution can be a classical solution or it can be a singular weak solution. We now list some results in this direction:

- ([12]) u^* is bounded if f satisfies (R) and $N \le 3$.
- ([3]) u^* is bounded if f satisfies (R) (can drop the convexity assumption) and Ω a convex domain in \mathbb{R}^4 .
- ([4]) u^* is bounded if Ω is a radial domain in \mathbb{R}^N with N < 10 and f satisfies (R) (can drop the convexity assumption).

4088

Download English Version:

https://daneshyari.com/en/article/4610389

Download Persian Version:

https://daneshyari.com/article/4610389

Daneshyari.com