
The Journal of Systems and Software 99 (2015) 135–154

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Bringing Test-Driven Development to web service choreographies

Felipe Bessona,∗, Paulo Mouraa, Fabio Kona, Dejan Milojicicb

a Department of Computer Science, University of São Paulo, Brazil
b Hewlett Packard Laboratories, Palo Alto, USA

a r t i c l e i n f o

Article history:
Received 17 April 2013
Received in revised form
23 September 2014
Accepted 23 September 2014
Available online 7 October 2014

Keywords:
Automated testing
Test-Driven Development
Web service choreographies

a b s t r a c t

Choreographies are a distributed approach for composing web services. Compared to orchestrations,
which use a centralized scheme for distributed service management, the interaction among the
choreographed services is collaborative with decentralized coordination. Despite the advantages, chore-
ography development, including the testing activities, has not yet evolved sufficiently to support the
complexity of the large distributed systems. This substantially impacts the robustness of the products
and overall adoption of choreographies. The goal of the research described in this paper is to support the
Test-Driven Development (TDD) of choreographies to facilitate the construction of reliable, decentral-
ized distributed systems. To achieve that, we present Rehearsal, a framework supporting the automated
testing of choreographies at development-time. In addition, we present a choreography development
methodology that guides the developer on applying TDD using Rehearsal. To assess the framework and
the methodology, we conducted an exploratory study with developers, whose result was that Rehearsal
was considered very helpful for the application of TDD and that the methodology helped the development
of robust choreographies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Service-Oriented Architecture (SOA) is a set of principles and
methods that uses services as the building blocks for the develop-
ment of distributed applications. Web services can be composed
to create more complete services and then to implement complex
business workflows. Different from orchestrations, choreographies
are a more scalable approach for composing services (Guimaraes
et al., 2012). The interaction among the choreographed services is
collaborative: coordination is distributed across all choreography
participants. Locally, each choreography participant is only con-
cerned with the actions it must take to play the desired role. For
this reason, choreographies are a good candidate architecture for
fully decentralized workflows (Barker et al., 2009).

Over the years, the way information is created, shared, used, and
integrated in the Internet is changing at a fast pace. As a result, the
current Internet is evolving towards the Future Internet, which is
foreseen as a federation of services that will provide built-in mech-
anisms such as scalable service access, mobility of network and
devices, in a secure, reliable, and robust way (Tselentis et al., 2010).
With respect to service access, service choreographies are proposed

∗ Corresponding author. Tel.: +55 1130916135.
E-mail addresses: besson@ime.usp.br (F. Besson), pbmoura@ime.usp.br

(P. Moura), kon@ime.usp.br (F. Kon), dejan.milojicic@hp.com (D. Milojicic).

as an adequate architecture to deal with the large scale nature of
the Future Internet, which can be translated into a high number
of interacting entities, parallel single service accesses, and massive
service load (Issarny et al., 2011).

A few standards have been proposed for modeling chore-
ographies, such as the Web Services Choreography Description
Language (WS-CDL), a W3C standard candidate proposed in 2004,
and, more recently, the OMG Business Process Model and Notation
version 2 (BPMN2). However, up to now, none of them have expe-
rienced wide adoption. This is also true for development methods
such as the one proposed by the Savara project (Madurai, 2009).
Due to the inherent characteristics of SOA – such as dynamism,
inter-organization integration, reuse of service – the automated,
and even the manual, testing of choreographies is not conducted
properly. This scenario results in choreographies implemented
using ad hoc, often chaotic, development processes. As a conse-
quence, choreography development activities cannot be performed
properly. Normally, neither the functional behavior nor scalability
of choreographies is verified or assessed properly.

The goal of our research is to apply Test-Driven Develop-
ment (TDD) to choreographies to facilitate their construction and
improve their adoption. TDD is a design technique that guides
the development of software through testing (Beck, 2003; Fowler,
2011). With TDD, test cases are written before the code which they
test, in a technique called test-first programming, which forces the
developer to think about what could possibly go wrong even before

http://dx.doi.org/10.1016/j.jss.2014.09.034
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.09.034
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.09.034&domain=pdf
mailto:besson@ime.usp.br
mailto:pbmoura@ime.usp.br
mailto:kon@ime.usp.br
mailto:dejan.milojicic@hp.com
dx.doi.org/10.1016/j.jss.2014.09.034

136 F. Besson et al. / The Journal of Systems and Software 99 (2015) 135–154

the implementation itself begins (Erdogmus et al., 2005). Experi-
ments and empirical observations in the industry have shown that
TDD increases code quality and reduces defect density. A case study
(Bhat and Nagappan, 2006) conducted in Microsoft assessed the
impact of TDD in two different teams. In the first one, although the
initial development time of the project using TDD increased by 35%,
the density of defects decreased by 62%. In the second case, the ini-
tial development time increased 15% while the density of defects
decreased 76%. Based on this favorable retrospect, our research
hypothesis was that TDD has a good potential to aggregate more
quality to choreography development.

This paper presents two major contributions:

1. Rehearsal, a novel framework for automated offline
(development-time) testing of web service choreographies.

2. A choreography development methodology, which guides the
developer to use the framework with TDD.

Both contributions were evaluated empirically via an
exploratory study following sound Empirical Software Engineering
principles.

Our research involved a three-year study on the requirements
and architecture for provisioning a powerful tool and useful
methodology for the development of robust choreographies. Dur-
ing this period, we carried out a comprehensive study of the
academic literature on the subject, a detailed analysis of related
software tools, and discussed the subject with tens of program-
mers, researchers, and practitioners from the software industry.
Our research findings indicate that the tool and the methodology,
as described in this paper, aid developers significantly in the com-
plex task of building large-scale decentralized systems composed
of collections of web services.

Differently from the related works, Rehearsal and the devel-
opment methodology provide features and guidelines for testing
and developing choreographies following agile software develop-
ment concepts. Therefore, with this framework, the developer can
write tests before the service implementation. Following the agile
culture, the tests are created by developers based on the choreog-
raphy specification. This process is performed incrementally, and
the tests guide the design of the choreographed services. During
the service integration, the exchanged messages can be intercepted
and validated through service proxies, which helps the developer
to monitor and debug the choreography behavior at the devel-
opment environment. Moreover, Rehearsal provides a feature to
emulate (mock) third-party services that cannot be used during
offline tests. This feature can be invoked through a fluent interface
that is similar to the interface of Java mocking tools (e.g., Mockito1

and EasyMock2).
This paper is structured as follows. Section 2 provides a brief

background, a practical choreography example, and requirements
for a comprehensive testing infrastructure to deal with real
problems arising from testing choreographies. Section 3 discusses
related work and its relationship with our approach. In Sections 5
and 6, we present Rehearsal and our methodology proposal and
how these artifacts address the problems presented in our chore-
ography example. To assess both artifacts, an exploratory study has
been conducted with advanced Computer Science students. The
study design and obtained results are presented and discussed in
Section 7. Then, an industrial validation carried out in the context
of CHOReOS project is summarized in Section 8. Finally, we draw
our conclusions and discuss ongoing and future work in Section 9.

1 http://code.google.com/p/mockito.
2 http://www.easymock.org.

2. Fundamental concepts

In this section, we present a brief introduction to web service
choreographies and Test-Driven Development (TDD), two fun-
damental concepts related to this work. Then, we present the
FutureMarket, an example of a choreography for distributed shop-
ping. This example guides the explanation of the Rehearsal features
in the next sections. Finally, we present the existing challenges of
choreography testing that this work aims to cover.

2.1. Web service choreographies

The ability of composing web services effectively is one of the
critical requirements for service oriented computing (Erl, 2007).
In this context, orchestrations and choreographies have been pro-
posed as approaches for composing web services. Orchestrations
correspond to a centralized approach where internal and external
web services are composed into an executable business process
(Peltz, 2003). Some standards, such as the Business Process Exe-
cution Language (BPEL),3 have been proposed for orchestrating
services. In an orchestration, a central party (node) controls the
interaction flow of the other parties, unlike in choreographies,
where the control is decentralized.

A choreography is a collaborative interaction in which each
involved node plays a well defined role. A role defines the behavior
a node must follow as part of a larger and more complex interaction.
When all roles have been set up, each node is aware of when and
with whom to communicate, based on pre-established messages
specified by a global model (Barker et al., 2009). Therefore, when
the choreography is started (enacted), there is no central entity
driving the interaction of the whole choreography. In a web ser-
vice choreography, each role is formally specified through a Web
Service Description Language (WSDL) document.

Since orchestrations are executable processes, choreographies
can be executed via distributed orchestrations (Autili and Ruscio,
2011). In this approach, the developer associates an orchestration
to each choreography role. During the choreography information
flow, many coordinators (orchestrations) are then responsible for
different parts of the flow. In this manner, there is no entity keeping
a global interaction state or, in other words, coordinating the entire
business flow.

In an abstract (higher) level, the messages exchanged among the
choreography roles are specified by using modeling languages (e.g.,
BPMN 2). However, in an executable (lower) level, a role implemen-
tation consists of an orchestration of a service or a set of services. In
this case, the WSDL interface exposed by the orchestration must be
compatible with the interface required by the implemented chore-
ography role.

Fig. 1 depicts a role implementation through orchestrations. The
orchestration in the left side implements the Store role. During
the choreography execution, this orchestration sends a payment
message to the Bank role that forwards part of the payment to
the Shipper role. Finally, this orchestration sends a confirmation
message back to the Store role. During the message exchange, the
information flows across the choreography roles in a decentralized
way.

2.2. Test-Driven Development (TDD)

Test-Driven Development (TDD) consists of a design technique
that guides software development through testing (Beck, 2003;

3 BPEL: http://www.oasis-open.org/committees/wsbpel.

http://code.google.com/p/mockito
http://www.easymock.org
http://www.oasis-open.org/committees/wsbpel

Download English Version:

https://daneshyari.com/en/article/461042

Download Persian Version:

https://daneshyari.com/article/461042

Daneshyari.com

https://daneshyari.com/en/article/461042
https://daneshyari.com/article/461042
https://daneshyari.com

