

Available online at www.sciencedirect.com

J. Differential Equations 257 (2014) 185-206

Journal of Differential Equations

www.elsevier.com/locate/jde

Spectral stability of shock waves associated with not genuinely nonlinear modes

Heinrich Freistühler^a, Peter Szmolyan^b, Johannes Wächtler^{c,*}

 ^a Department of Mathematics and Statistics, University of Konstanz, 78467 Konstanz, Germany
 ^b Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

^c Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

Received 29 October 2013

Available online 21 April 2014

Abstract

We study viscous shock waves that are associated with a simple mode (λ, r) of a system $u_t + f(u)_x = u_{xx}$ of conservation laws and that connect states on either side of an 'inflection' hypersurface Σ in state space at whose points $r \cdot \nabla \lambda = 0$ and $(r \cdot \nabla)^2 \lambda \neq 0$. Such loss of genuine nonlinearity, the simplest example of which is the cubic scalar conservation law $u_t + (u^3)_x = u_{xx}$, occurs in many physical systems. We show that such shock waves are spectrally stable if their amplitude is sufficiently small. The proof is based on a direct analysis of the eigenvalue problem by means of geometric singular perturbation theory. Well-chosen rescalings are crucial for resolving degeneracies. By results of Zumbrun the spectral stability shown here implies nonlinear stability of these shock waves.

© 2014 Elsevier Inc. All rights reserved.

MSC: 35L67; 35B35; 34E13

Keywords: Viscous shock waves; Spectral stability; Evans function; Geometric singular perturbation theory

^{*} Corresponding author.

http://dx.doi.org/10.1016/j.jde.2014.03.018

E-mail addresses: heinrich.freistuehler@uni-konstanz.de (H. Freistühler), szmolyan@tuwien.ac.at (P. Szmolyan), johannes.waechtler@uni-hamburg.de (J. Wächtler).

^{0022-0396/© 2014} Elsevier Inc. All rights reserved.

1. Introduction

This paper is on viscous shock waves

$$u(x,t) = \phi(x-st), \qquad \phi(\pm \infty) = u^{\pm} \in U, \tag{1}$$

in strictly hyperbolic systems of conservation laws

$$u_t + f(u)_x = u_{xx}$$

with state space U, a convex, open subset of \mathbb{R}^n , and smooth flux $f: U \to \mathbb{R}^n$. Let

$$\lambda_1(u) < \cdots < \lambda_n(u), \quad u \in U,$$

denote the eigenvalues of Df(u) with associated smooth right eigenvectors $r_i(u)$,

$$Df(u)r_{i}(u) = \lambda_{i}(u)r_{i}(u), \quad j = 1, \dots, n.$$

We consider the case of a not genuinely nonlinear mode [16]. More precisely, we assume that the flux possesses a hypersurface $\Sigma \subset U$ such that, for a certain $k \in \{1, ..., n\}$,

$$r_k \cdot \nabla \lambda_k(u) = 0, \qquad (r_k \cdot \nabla)^2 \lambda_k(u) > 0, \quad u \in \Sigma.$$
 (2)

The hypersurface Σ has the same meaning for the mode (λ_k, r_k) as an inflection point of the flux function does for a scalar conservation law: Along an integral curve of the vector field r_k passing through Σ , the characteristic speed λ_k is locally decreasing 'before' Σ , minimal at the intersection point, and increasing 'after' Σ . The shock waves (1) of interest are *k*-shocks in the sense of Lax, i.e.,

$$\lambda_{k-1}(u^-) < s < \lambda_k(u^+)$$
 and $\lambda_k(u^-) < s < \lambda_{k+1}(u^+)$,

whose end states u^- and u^+ lie on different sides of Σ . The purpose of this paper is to show that these shock waves are spectrally stable, at least if their amplitude $|u^+ - u^-|$ is sufficiently small.

Physics provides many examples of not genuinely nonlinear modes (2). They are standard, e.g. in elasticity [2], in magnetohydrodynamics [5], and also in simple retrograde fluids [21,13]. It would be interesting to extend the results of this paper to these systems with the corresponding physical viscosities.

For any Laxian shock wave (1), spectral stability can be formulated as a property of the Evans function, as we now recapitulate; for details, we refer to [1,9,23,6]. The object of investigation is the non-autonomous eigenvalue problem

$$W' = \begin{pmatrix} Df(\phi) - sI & I\\ \kappa I & 0 \end{pmatrix} W,$$
(3)

on \mathbb{C}^{2n} , in which $\kappa \in \mathbb{C}$ is the spectral parameter; the differentiation is with respect to $\xi = x - st$. An eigenfunction associated with the eigenvalue κ is a solution W of (3) with $W(-\infty) = 0 = W(+\infty)$. Due to the shift invariance of the profile, $W = (\phi', 0)$ is an eigenfunction associated

186

Download English Version:

https://daneshyari.com/en/article/4610420

Download Persian Version:

https://daneshyari.com/article/4610420

Daneshyari.com