

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 257 (2014) 2704-2727

www.elsevier.com/locate/jde

Parabolic equations with exponential nonlinearity and measure data

Phuoc-Tai Nguyen

Department of Mathematics, Technion, Haifa 32000, Israel Received 12 March 2014 Available online 14 June 2014

Abstract

Let Ω be a bounded domain in \mathbb{R}^N and T > 0. We study the problem

 $(P_{\pm}) \quad \begin{cases} u_t - \Delta u \pm g(u) = \mu & \text{in } Q_T := \Omega \times (0, T) \\ u = 0 & \text{on } \partial \Omega \times (0, T) \\ u(., 0) = \omega & \text{in } \Omega \end{cases}$

where μ and ω are bounded measures in Q_T and Ω respectively and $g(u) \sim e^{a|u|^q}$ with a > 0 and $q \ge 1$. We provide a sufficient condition in terms of fractional maximal potentials of μ and ω for solving (P_{\pm}) . Moreover, we prove uniqueness for (P_{\pm}) .

© 2014 Elsevier Inc. All rights reserved.

MSC: 35K15; 35K58; 35R06

Keywords: Semilinear parabolic equations; Exponential nonlinearity; Parabolic Wolff potential; Radon measures

Contents

۱.	Introd	uction	2705
	1.1.	Introduction of problem and a brief survey of literature	2705
	1.2.	Notation and terminology	2706

http://dx.doi.org/10.1016/j.jde.2014.05.051 0022-0396/© 2014 Elsevier Inc. All rights reserved.

E-mail address: nguyenphuoctai.hcmup@gmail.com.

	1.3. Statement of the main results	2707		
2.	Estimates on parabolic Wolff potentials	2708		
3.	Estimates on solutions to linear parabolic equations	2715		
4.	Proof of Theorem 1.1	2719		
5.	Proof of Theorem 1.2	2723		
Acknowledgments				
References				

1. Introduction

1.1. Introduction of problem and a brief survey of literature

In this paper, we study the following problem

$$\begin{cases} u_t - \Delta u \pm g(u) = \mu & \text{in } Q_T := \Omega \times (0, T) \\ u = 0 & \text{on } \partial \Omega \times (0, T) \\ u(., 0) = \omega & \text{in } \Omega \end{cases}$$
(1.1)

where Ω is a C^2 bounded domain in \mathbb{R}^N , T > 0, $g(u) \sim e^{a|u|^q}$ with a > 0 and $q \ge 1$, ω and μ are respectively bounded measures on Ω and Q_T .

In literature, the problem of existence and uniqueness for elliptic and parabolic equations involving exponential nonlinearity and measure data has been investigated by numerous authors. In [1], D. Bartolucci et al. proved that when N > 2, if ν is a bounded Radon measure on a bounded domain $\Omega \subset \mathbb{R}^N$ such that (C) $\nu \leq 4\pi \mathcal{H}^{N-2}$ (here \mathcal{H}^{N-2} is (N-2)-dimensional Hausdorff measure in \mathbb{R}^N) then the problem

$$-\Delta u + e^{u} - 1 = \nu \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega \tag{1.2}$$

admits a unique solution. It was pointed out by A.C. Ponce that the converse is not true. However, when N = 2, J.L. Vazquez [11] showed that (C) is a necessary and sufficient condition for solving (1.2). Existence result for boundary value problem with measure data related to (1.2) was given by L. Véron [12]. Recently, a striking existence result for quasilinear elliptic equations was obtained by M.F. Bidaut-Véron et al. thanks to effective tool *Wolff potentials* (see [2] for more details).

Study on Cauchy problem for semilinear heat equations with exponential nonlinearity was carried out by many authors in different directions. See [3,4,9,10] and references therein. Among them, we refer to an interesting result in the framework of Orliz spaces due to B. Ruf and E. Terraneo [9]. They showed that local existence for the problem

$$\partial_t u - \Delta u - g(u) = 0$$
 in $\mathbb{R}^N \times (0, T)$, $u = u_0$ in \mathbb{R}^N (1.3)

with $g(u) = e^{u^2} - 1$ can be established under a smallness condition on an appropriate Orliz norm of the initial data u_0 . In [4], by using a contraction mapping argument, N. Ioku proved global existence for (1.3) under the same assumption on u_0 . It is noteworthy that the method used in [9]

Download English Version:

https://daneshyari.com/en/article/4610444

Download Persian Version:

https://daneshyari.com/article/4610444

Daneshyari.com