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Abstract

This paper is concerned with the inflow problem for the one-dimensional compressible Navier—Stokes
equations. For such a problem, Matsumura and Nishihara showed in [10] that there exists boundary layer
solution to the inflow problem, and that both the boundary layer solution, the rarefaction wave, and the
superposition of boundary layer solution and rarefaction wave are nonlinear stable under small initial per-
turbation. The main purpose of this paper is to show that similar stability results for the boundary layer
solution and the supersonic rarefaction wave still hold for a class of large initial perturbation which can
allow the initial density to have large oscillation. The proofs are given by an elementary energy method and
the key point is to deduce the desired lower and upper bounds on the density function.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the large time behaviors of solutions to the inflow problem for
one-dimensional compressible Navier—Stokes equations on the half line R = (0, 400), which
is an initial-boundary value problem in Eulerian coordinates:

pr + (pu)x =0, inR; xR,
(puw)i + (ou® + p) , = pite. inR; x Ry,

(1.1)
(pau)|X:0=(p—’u—)a u_ >0,

(0, u)(0,x) = (po, uo)(x) = (o4, u4), asx—> +oo.

Here, p(> 0), u, and p = p(p) = p¥ with y > 1 being the adiabatic exponent are, respectively,
the density, the velocity, and the pressure, while the viscosity coefficient p (> 0), farfield states
o+ (> 0) and uy are constants.

We assume that the initial data (oo (x), uo(x)) satisfy the boundary condition (1.1)3 as a com-
patibility condition, i.e.

p0(0) = p—, up(0) =u_.

The assumption u_ > 0 implies that, through the boundary x = 0 the fluid with the density p_
flows into the region R, and hence the problem (1.1) is called the inflow problem. The cases of
u_ =0 and u_ < 0, the problems where the condition p(t,0) = p_ is removed, are called the
impermeable wall problem and the outflow problem, respectively.

For the case of u_ > 0, as in [10], the inflow problem (1.1) can then be transformed to the
problem in the Lagrangian coordinates:

vy —uy =0, x>s_t, t>0,

Ux
Hz‘f‘P(U)x:M(T)x, x>s_t, t>0, (12)
W, ) |x=s_r = (V—,u_), u_ >0,

(v, u)|r=0 = (vo, up)(x) = (v4,uy), asx— +oQ,

where
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