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Abstract

For an n-dimensional compact submanifold M" in the Euclidean space RV, we study estimates for
eigenvalues of the Paneitz operator on M". Our estimates for eigenvalues are sharp.
© 2014 Elsevier Inc. All rights reserved.

MSC: 53C40; 58C40

Keywords: A Paneitz operator; Q-curvature; Eigenvalues; The first eigenfunction

1. Introduction

For compact Riemann surfaces M 2 Liand Yau [11] introduced the notion of conformal vol-
ume, which is a global invariant of the conformal structure. They determined the conformal
volume for a large class of Riemann surfaces, which admit minimal immersions into spheres. In
particular, they proved that for a compact Riemann surface M?, if there exists a conformal map
from M? into the unit sphere SV (1), then the first eigenvalue A; of the Laplacian satisfies

A1 vol(M?) <2V.(N, M?)

and the equality holds only if M? is a minimal surface in SV (1), where V,.(N, M?) is the con-
formal volume of M?2.
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For 4-dimensional compact Riemannian manifolds, Paneitz [13] introduced a fourth order
operator P, defined by, letting div be the divergence for the metric g,

ngzAzf—div[(gRg—2Ric>Vfi|, (1.1)

for smooth functions f on M*, where A and V denote the Laplacian and the gradient operator
with respect to the metric g on M*, respectively, and R and Ric are the scalar curvature and Ricci
curvature tensor with respect to the metric g on M*. Furthermore, Branson [ 1] has generalized the
Paneitz operator to an n-dimensional Riemannian manifold. For an n-dimensional Riemannian
manifold (M", g), the operator Py is defined by

n—4
Py f = A f —div[(a,Rg + byRic)V f] + TQf, (1.2)
where
Q = Cn|RiC|2 + anZ — mAR
is called Q-curvature with respect to the metric g,
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This operator P, is also called Paneitz operator or Branson—Paneitz operator. It is known that
Paneitz operator is conformally invariant of bi-degree (”2;4, #), that is, under conformal trans-
formation of Riemannian metric g = ¢** g, the Paneitz operator P, changes into

n+4

n—4
ngze_Tngo(ewa). (1.3)
Let M (M™) be the set of Riemannian metrics on M". For each g € 9T1(M™), the total Q-curvature

for g is defined by

Qlel= / Qdv.

Mn
When n =4, from the Gauss—Bonnet—Chern theorem for dimension 4, we have
1
Q[g]=—Z/IW|2dv+8ﬂ2X(M4)» (1.4)
M4

where W is the Weyl conformal curvature tensor and x (M 4) is the Euler characteristic of M*.
Hence, we know that the total Q-curvature is a conformal invariant for dimension 4.
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