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Abstract

For an n-dimensional compact submanifold Mn in the Euclidean space RN , we study estimates for 
eigenvalues of the Paneitz operator on Mn. Our estimates for eigenvalues are sharp.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

For compact Riemann surfaces M2, Li and Yau [11] introduced the notion of conformal vol-
ume, which is a global invariant of the conformal structure. They determined the conformal 
volume for a large class of Riemann surfaces, which admit minimal immersions into spheres. In 
particular, they proved that for a compact Riemann surface M2, if there exists a conformal map 
from M2 into the unit sphere SN(1), then the first eigenvalue λ1 of the Laplacian satisfies

λ1 vol
(
M2) ≤ 2Vc

(
N,M2)

and the equality holds only if M2 is a minimal surface in SN(1), where Vc(N, M2) is the con-
formal volume of M2.
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For 4-dimensional compact Riemannian manifolds, Paneitz [13] introduced a fourth order 
operator Pg defined by, letting div be the divergence for the metric g,

Pgf = �2f − div

[(
2

3
Rg − 2Ric

)
∇f

]
, (1.1)

for smooth functions f on M4, where � and ∇ denote the Laplacian and the gradient operator 
with respect to the metric g on M4, respectively, and R and Ric are the scalar curvature and Ricci 
curvature tensor with respect to the metric g on M4. Furthermore, Branson [1] has generalized the 
Paneitz operator to an n-dimensional Riemannian manifold. For an n-dimensional Riemannian 
manifold (Mn, g), the operator Pg is defined by

Pgf = �2f − div
[
(anRg + bnRic)∇f

] + n − 4

2
Qf, (1.2)

where

Q = cn|Ric|2 + dnR
2 − 1

2(n − 1)
�R

is called Q-curvature with respect to the metric g,

an = (n − 2)2 + 4

2(n − 1)(n − 2)
, bn = − 4

n − 2
,

cn = − 2

(n − 2)2
, dn = n(n − 2)2 − 16

8(n − 1)2(n − 2)2
.

This operator Pg is also called Paneitz operator or Branson–Paneitz operator. It is known that 
Paneitz operator is conformally invariant of bi-degree ( n−4

2 , n+4
2 ), that is, under conformal trans-

formation of Riemannian metric g = e2wg0, the Paneitz operator Pg changes into

Pgf = e− n+4
2 wPg0

(
e

n−4
2 wf

)
. (1.3)

Let M(Mn) be the set of Riemannian metrics on Mn. For each g ∈ M(Mn), the total Q-curvature 
for g is defined by

Q[g] =
∫

Mn

Qdv.

When n = 4, from the Gauss–Bonnet–Chern theorem for dimension 4, we have

Q[g] = −1

4

∫
M4

|W |2dv + 8π2χ
(
M4), (1.4)

where W is the Weyl conformal curvature tensor and χ(M4) is the Euler characteristic of M4. 
Hence, we know that the total Q-curvature is a conformal invariant for dimension 4.
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