Existence of entire solutions for a class of variable exponent elliptic equations

Patrizia Pucci ${ }^{\text {a }}$, Qihu Zhang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy
${ }^{\mathrm{b}}$ College of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

Received 27 March 2014; revised 6 May 2014
Available online 2 June 2014
Dedicated to Prof. Xianling Fan on the occasion of his 70th birthday

Abstract

The paper deals with the existence of entire solutions for a quasilinear equation $\left(\mathcal{E}_{\lambda}\right)$ in \mathbb{R}^{N}, depending on a real parameter λ, which involves a general variable exponent elliptic operator \mathbf{A} in divergence form and two main nonlinearities. The competing nonlinear terms combine each other. Under some conditions, we prove the existence of a critical value $\lambda_{*}>0$ with the property that $\left(\mathcal{E}_{\lambda}\right)$ admits nontrivial nonnegative entire solutions if and only if $\lambda \geq \lambda_{*}$. Furthermore, under the further assumption that the potential \mathscr{A} of \mathbf{A} is uniform convex, we give the existence of a second independent nontrivial nonnegative entire solution of $\left(\mathcal{E}_{\lambda}\right)$, when $\lambda>\lambda_{*}$. Our results extend the previous work of Autuori and Pucci (2013) [6] from the case of constant exponents p, q and r to the case of variable exponents. More interesting, we weaken the condition $\max \{2, p\}<q<\min \left\{r, p^{*}\right\}$ to the simple request that $1 \ll q \ll r$. Furthermore, we extend the previous work of Alama and Tarantello (1996) [2] from Dirichlet Laplacian problems in bounded domains of \mathbb{R}^{N} to the case of a general variable exponent differential equation in the entire \mathbb{R}^{N}, and also remove the assumption $q>2$. Hence the results of this paper are new even in the canonical case $p(\cdot) \equiv 2$.

 © 2014 Elsevier Inc. All rights reserved.MSC: primary 35J62, 35J70; secondary 35J20
Keywords: $p(x)$-Laplacian; Integral functionals; Variable exponent Sobolev spaces; Critical points

[^0]
1. Introduction

In this paper we study the one parameter variable exponent elliptic equation

$$
-\operatorname{div} \mathbf{A}(x, \nabla u)+a(x)|u|^{p(x)-2} u=\lambda w(x)|u|^{q(x)-2} u-h(x)|u|^{r(x)-2} u
$$

in \mathbb{R}^{N}, where $\lambda \in \mathbb{R}$ and $\mathbf{A}: \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ admits a potential \mathscr{A}, with respect to its second variable ξ, and satisfies the following assumption, required throughout the paper.
$\left(\mathcal{A}_{1}\right)$ The potential $\mathscr{A}=\mathscr{A}(x, \xi)$ is a continuous function in $\mathbb{R}^{N} \times \mathbb{R}^{N}$, with continuous derivative with respect to $\xi, \mathbf{A}=\partial_{\xi} \mathscr{A}(x, \xi)$, and verifies:
(i) $\mathscr{A}(x, 0)=0$ and $\mathscr{A}(x, \xi)=\mathscr{A}(x,-\xi)$ for all $(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$;
(ii) $\mathscr{A}(x, \cdot)$ is strictly convex in \mathbb{R}^{N} for all $x \in \mathbb{R}^{N}$;
(iii) There exist constants $C_{1}, C_{2}>0$ and an exponent $p \in \mathcal{P}^{\log }\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
C_{1}|\xi|^{p(x)} \leq \mathbf{A}(x, \xi) \cdot \xi, \quad|\mathbf{A}(x, \xi)| \leq C_{2}|\xi|^{p(x)-1} \tag{1}
\end{equation*}
$$

for all $(x, \xi) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$, where $1 \ll p \ll N$, and $p \in \mathcal{P}^{\log }\left(\mathbb{R}^{N}\right)$ means that p is globally \log-Hölder continuous in \mathbb{R}^{N}, i.e. there exists a p_{∞} satisfying

$$
\begin{aligned}
|p(x)-p(y)| & \leq C_{3} / \ln (e+1 /|x-y|) \\
\left|p(x)-p_{\infty}\right| & \leq C_{4} / \ln (e+|x|)
\end{aligned}
$$

for all $x, y \in \mathbb{R}^{N}$.
A typical example is $\mathbf{A}(x, \xi)=|\xi|^{p(x)-2} \xi$, so that along any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$

$$
-\operatorname{div} \mathbf{A}(x, \nabla \varphi)=-\operatorname{div}\left(|\nabla \varphi|^{p(x)-2} \nabla \varphi\right)=-\Delta_{p(x)} \varphi
$$

which is called the $p(x)$-Laplacian and satisfies $\left(\mathcal{A}_{1}\right)$ provided that $p \in \mathcal{P}^{\log }\left(\mathbb{R}^{N}\right)$ and $1<p^{-} \leq$ $p^{+}<N$, where

$$
p^{+}=\sup _{x \in \mathbb{R}^{N}} p(x), \quad p^{-}=\inf _{x \in \mathbb{R}^{N}} p(x) .
$$

We write $p_{1} \ll p_{2}$ if

$$
\inf _{x \in \mathbb{R}^{N}}\left[p_{2}(x)-p_{1}(x)\right]>0,
$$

where p_{1} and p_{2} are two continuous exponents. Furthermore, in the entire paper, we assume
$\left(\mathcal{H}_{1}\right)$ (i) $a \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$, and for some constant $c_{1} \in(0,1]$ the coefficient a satisfies

$$
\begin{equation*}
a(x) \geq c_{1}(1+|x|)^{-p(x)} \quad \text { for all } x \in \mathbb{R}^{N} \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/4610506

Download Persian Version:

https://daneshyari.com/article/4610506

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: patrizia.pucci@unipg.it (P. Pucci), zhangqihu @yahoo.com, zhangqh1999@yahoo.com.cn (Q. Zhang).

