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In this paper we show that the hydrodynamic problem for three-
dimensional water waves with strong surface-tension effects ad-
mits a fully localised solitary wave which decays to the undisturbed
state of the water in every horizontal direction. The proof is based
upon the classical variational principle that a solitary wave of this
type is a critical point of the energy, which is given in dimension-
less coordinates by
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subject to the constraint that the momentum

I(η,φ) =
∫
R2

ηxφ|y=1+η dx dz

is fixed; here {(x, y, z): x, z ∈ R, y ∈ (0,1+η(x, z))} is the fluid do-
main, φ is the velocity potential and β > 1/3 is the Bond number.
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These functionals are studied locally for η in a neighbourhood of
the origin in H3(R2).
We prove the existence of a minimiser of E subject to the con-
straint I = 2μ, where 0 < μ � 1. The existence of a small-
amplitude solitary wave is thus assured, and since E and I are
both conserved quantities a standard argument may be used to
establish the stability of the set Dμ of minimisers as a whole. ‘Sta-
bility’ is however understood in a qualified sense due to the lack of
a global well-posedness theory for three-dimensional water waves.
We show that solutions to the evolutionary problem starting near
Dμ remain close to Dμ in a suitably defined energy space over
their interval of existence; they may however explode in finite time
due to higher-order derivatives becoming unbounded.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The hydrodynamic problem

The classical three-dimensional gravity-capillary water wave problem concerns the irrotational flow of
a perfect fluid of unit density subject to the forces of gravity and surface tension. The fluid motion is
described by the Euler equations in a domain bounded below by a rigid horizontal bottom {y = 0} and
above by a free surface {y = h +η(x, z, t)}, where h denotes the depth of the water in its undisturbed
state and the function η depends upon the two horizontal spatial directions x, z and time t . In terms
of an Eulerian velocity potential φ, the mathematical problem is to solve Laplace’s equation

φxx + φyy + φzz = 0, 0 < y < h + η,

with boundary conditions

φy = 0, y = 0,

ηt = φy − ηxφx − ηzφz, y = h + η,

φt = −1
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in which g is the acceleration due to gravity and σ > 0 is the coefficient of surface tension (see, for
example, Stoker [30, §§1, 2.1]). Introducing the dimensionless variables
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one obtains the equations

φxx + φyy + φzz = 0, 0 < y < 1 + η, (1)
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