

Contents lists available at [SciVerse ScienceDirect](http://www.ScienceDirect.com/)

Journal of Differential Equations

www.elsevier.com/locate/jde

Existence and conditional energetic stability of three-dimensional fully localised solitary gravity-capillary water waves

B. Buffoni a, M.D. Groves ^b*,*c*,*∗, S.M. Sun d, E. Wahlén ^e

^a *Section de mathématiques (MATHAA), Station 8, École polytechnique fédérale, 1015 Lausanne, Switzerland*

^b *FR 6.1 – Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany*

^c *Department of Mathematical Sciences, Loughborough University, Loughborough, Leics, LE11 3TU, UK*

^d *Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA*

^e *Centre for Mathematical Sciences, Lund University, P.O. Box 118, 22100 Lund, Sweden*

article info abstract

Article history: Received 12 July 2011 Revised 6 October 2012 Available online 13 November 2012

In this paper we show that the hydrodynamic problem for threedimensional water waves with strong surface-tension effects admits a *fully localised solitary wave* which decays to the undisturbed state of the water in every horizontal direction. The proof is based upon the classical variational principle that a solitary wave of this type is a critical point of the energy, which is given in dimensionless coordinates by

$$
\mathcal{E}(\eta, \phi) = \int_{\mathbb{R}^2} \left\{ \frac{1}{2} \int_0^{1+\eta} (\phi_x^2 + \phi_y^2 + \phi_z^2) \, dy + \frac{1}{2} \eta^2 + \beta \left[\sqrt{1 + \eta_x^2 + \eta_z^2} - 1 \right] \right\} dx \, dz,
$$

subject to the constraint that the momentum

$$
\mathcal{I}(\eta,\phi) = \int\limits_{\mathbb{R}^2} \eta_x \phi|_{y=1+\eta} \, \mathrm{d}x \, \mathrm{d}z
$$

is fixed; here $\{(x, y, z): x, z \in \mathbb{R}, y \in (0, 1 + \eta(x, z))\}$ is the fluid domain, ϕ is the velocity potential and $\beta > 1/3$ is the Bond number.

0022-0396/\$ – see front matter © 2012 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.jde.2012.10.007>

^{*} Corresponding author at: FR 6.1 – Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany. *E-mail address:* groves@math.uni-sb.de (M.D. Groves).

These functionals are studied locally for *η* in a neighbourhood of the origin in $H^3(\mathbb{R}^2)$.

We prove the existence of a minimiser of $\mathcal E$ subject to the constraint $\mathcal{I} = 2\mu$, where $0 < \mu \ll 1$. The existence of a smallamplitude solitary wave is thus assured, and since $\mathcal E$ and $\mathcal I$ are both conserved quantities a standard argument may be used to establish the stability of the set D_μ of minimisers as a whole. 'Stability' is however understood in a qualified sense due to the lack of a global well-posedness theory for three-dimensional water waves. We show that solutions to the evolutionary problem starting near D_{μ} remain close to D_{μ} in a suitably defined energy space over their interval of existence; they may however explode in finite time due to higher-order derivatives becoming unbounded.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The hydrodynamic problem

The classical *three-dimensional gravity-capillary water wave problem* concerns the irrotational flow of a perfect fluid of unit density subject to the forces of gravity and surface tension. The fluid motion is described by the Euler equations in a domain bounded below by a rigid horizontal bottom $\{y = 0\}$ and above by a free surface $\{y = h + \eta(x, z, t)\}$, where *h* denotes the depth of the water in its undisturbed state and the function *η* depends upon the two horizontal spatial directions *x*, *z* and time *t*. In terms of an Eulerian velocity potential *φ*, the mathematical problem is to solve Laplace's equation

$$
\phi_{xx} + \phi_{yy} + \phi_{zz} = 0
$$
, $0 < y < h + \eta$,

with boundary conditions

$$
\phi_y = 0, \qquad y = 0,
$$

\n
$$
\eta_t = \phi_y - \eta_x \phi_x - \eta_z \phi_z, \qquad y = h + \eta,
$$

\n
$$
\phi_t = -\frac{1}{2} (\phi_x^2 + \phi_y^2 + \phi_z^2) - g\eta
$$

\n
$$
+ \sigma \left[\frac{\eta_x}{\sqrt{1 + \eta_x^2 + \eta_z^2}} \right]_x + \sigma \left[\frac{\eta_z}{\sqrt{1 + \eta_x^2 + \eta_z^2}} \right]_z, \qquad y = h + \eta,
$$

in which *g* is the acceleration due to gravity and *σ >* 0 is the coefficient of surface tension (see, for example, Stoker [\[30, §§1, 2.1\]\)](#page--1-0). Introducing the dimensionless variables

$$
(x', y', z') = \frac{1}{h}(x, y, z), \qquad t' = \left(\frac{g}{h}\right)^{1/2},
$$

$$
\eta'(x', z', t') = \frac{1}{h}\eta(x, z, t), \qquad \phi'(x', y', z', t') = \frac{1}{(gh)^{3/2}}\phi(x, y, z, t),
$$

one obtains the equations

$$
\phi_{xx} + \phi_{yy} + \phi_{zz} = 0, \quad 0 < y < 1 + \eta,\tag{1}
$$

Download English Version:

<https://daneshyari.com/en/article/4610535>

Download Persian Version:

<https://daneshyari.com/article/4610535>

[Daneshyari.com](https://daneshyari.com)