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1. Introduction

There are difficult and interesting open questions about allowed asymptotic behaviour in systems
of differential equations arising in the modelling of chemical reaction networks (CRNs for short).
The main goal in this area is to make claims about the behaviour of these systems which are as far
as possible independent of the particular choices of functions or parameters which describe the rates
of reaction or “kinetics”. Classical results in this direction [1,2] rely strongly on the choice of “mass
action kinetics” leading to particular polynomial differential equations. Mathematically, such results
involve proving that solutions of certain parameterised families of polynomial differential equations
have certain asymptotic behaviours regardless of the values of the parameters, but provided these
have fixed sign. However when the kinetics is constrained only by loose qualitative laws, the fam-
ily of possible differential equations describing a reaction network becomes much larger, and results
become fewer. Here, we provide a general result based on the theory of monotone dynamical sys-
tems [3,4], and use it to prove global convergence in certain classes of CRNs where only very mild
assumptions are made on the kinetics.
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The key geometrical insight on which the results are built was provided in [5] and generalised
in [6]. Stated very briefly, these results show that sometimes the existence of an integral of motion
in a strongly order-preserving dynamical system allows the construction of a Liapunov function on
each level set, which increases along nontrivial orbits. This in turn has strong implications for the
convergence of orbits. While in general it may be an unusual conjunction of affairs to have a first
integral, strong monotonicity, and moreover integral and order cone related in a particular way, it
actually appears that this situation is not uncommon in CRNs. However identifying when this situa-
tion occurs is nontrivial, and explicit construction of families of CRNs satisfying all these conditions
becomes important.

The results at several points will be presented in considerably less generality than possible in order
to simplify the presentation and highlight the key geometrical points, although where a theoretical
result allows greater generality, this may be mentioned.

2. A convergence result

The result presented in this section, and applied in subsequent sections, is essentially derived
from Theorem 2.4 in [6], with slight modification and specialisation for our purposes. Note that The-
orem 2.4 in [6] stated that all orbits on a level set of the system in question converge to a unique
equilibrium, provided the equilibrium exists, while what was actually proved was that all bounded or-
bits converge to the unique equilibrium. As remarked in [7], it remains an open question whether the
word “bounded” can be dropped from the statement of the main result as erroneously done in [6].
However for the purposes of this paper all orbits will be bounded and only convergence of bounded
orbits is required. Note also that much of the difficulty in the proof of Theorem 2.4 in [6] stemmed
from the fact that the integrals of motion considered were in general nonlinear whereas here only
the linear case is required.

Standard notions from convex geometry (as in [8-10] for example) will be assumed. Closed, convex
and pointed cones in R" define partial orders on R". Following [8], cones in R" which are closed,
convex, pointed and solid will be referred to as proper. Standard results in the theory of monotone
dynamical systems [3,4] will also be assumed.

Notation. The symbols <, >, <, >, <, > will refer to the usual partial ordering of vectors in R"
derived from the nonnegative orthant R’;O. So, given a,b e R", a<b meansb—a e R’;O, a < b means
b—ae R”}O\{O} and a < b means b —a € int(R"}O). When the ordering is defined by some other
closed, convex and pointed cone K, the alternative symbols <, >, <, =, <, > will be used. So, for
example, a < b means b —a € int K, and so forth.

Let Y, K be proper cones in R" with K D Y. Define K* to be the dual cone to K, ie., K* =
{y eR" | (y,k) >0 for all k € K}. Consider a system

Xx=F(x) (M)
on Y, and assume that (1) defines a local semiflow ¢ on Y.
2.1. Three conditions

We define three conditions on (1) and the associated semiflow which will be referred to as Con-
ditions 1, 2 and 3:

1. ¢ is monotone with respect to K, i.e., given x, y € Y with x < y and any t > 0 such that ¢;(x) and
¢¢(y) are defined, ¢¢(x) < ¢¢(y). Moreover, ¢ is strongly monotone in intY in the following sense:
given x < y with at least one of x or y in intY, then ¢:(x) < ¢:(y) for all t > 0 such that ¢;(x)
and ¢¢(y) are defined.
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