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Abstract

Let Ω ⊂ R
n (n ≥ 1) be a bounded smooth domain. Consider the following initial–boundary value prob-

lem of reaction–diffusion systems

∂tu1 − �u1 − u
p11
1 u

p12
2 = 0, in (0, T ) × Ω,

∂tu2 − �u2 − u
p21
1 u

p22
2 = 0, in (0, T ) × Ω,

u(t, x) = 0, on (0, T ) × ∂Ω,

u(0, x) = Φ(x) ≥ 0, in Ω,

(I)

where u = (u1, u2) ≥ 0, and Φ(x) = (ϕ1(x),ϕ2(x)) ≥ 0, and ν is the unit outer normal at ∂Ω and
T ∈ (0,∞] is the maximum existence time of u (in L∞-norm) and the exponents pij , i, j = 1,2, are
non-negative real numbers.

Systems of form (I) naturally arise in studying non-linear phenomena in biology, chemistry, medicine
and physics. For instance, (I) has been used to model densities and temperatures in chemical reactions,
condensate amplitudes in Bose–Einstein condensates, wave amplitudes (or envelops of multiple interacting
optical modes) in optical fibers, and pattern formation in ecological systems.

Under suitable conditions on pij , i, j = 1,2, we established the following exact blow-up rates for blow-
up solutions u of (I)

C(T − t)−θi ≤ sup
x∈Ω

ui(t, x) ≤ C−1(T − t)−θi , i = 1,2,

where θ1 and θ2 > 0 are positive exponents depending only on pij , generalizing earlier results in this
direction.
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1. Introduction

Let Ω ⊂ R
n (n ≥ 1) be a bounded smooth domain. Consider the following initial–boundary

value problem of reaction–diffusion systems

∂tu1 − �u1 − u
p11
1 u

p12
2 = 0, in (0, T ) × Ω,

∂tu2 − �u2 − u
p21
1 u

p22
2 = 0, in (0, T ) × Ω,

u(t, x) = 0, on (0, T ) × ∂Ω,

u(0, x) = Φ(x) ≥ 0, in Ω,

(1.1)

where u = (u1, u2) ≥ 0, and Φ(x) = (ϕ1(x),ϕ2(x)) ≥ 0,1 and ν is the unit outer normal at ∂Ω

and T ∈ (0,∞] is the maximum existence time of u (in L∞-norm) and the exponents pij , i, j =
1,2, are non-negative real numbers (it is understood 00 = 1). Throughout the paper and without
further mentioning, we assume

p12p21 > 0.

That is, system (1.1) is irreducible.
Systems of form (1.1) naturally arise in studying non-linear phenomena in biology, chemistry

and physics. For instance, (1.1) has been used to model densities and temperatures in chemical
reactions, condensate amplitudes in Bose–Einstein condensates, wave amplitudes (or envelops of
multiple interacting optical modes) in optical fibers, and pattern formation in ecological systems.
The quantities ui ’s represent densities, temperatures, amplitudes, etc., and are non-negative, see
[12,13,15,16] and references therein.

A non-negative solution u of (1.1) is called a global solution if its maximal existence time T

in L∞-norm is infinite, i.e., T = ∞. While u is called a blow-up solution if T ∈ (0,∞) and there
holds

lim
t→T − max

i=1,2
sup
x∈Ω

ui(t, x) = ∞.

Then T is called the blow-up time of u. It is well-known, as in the scalar case, (1.1) admits both
global and blow-up solutions (under suitable conditions), see for example [1,3,5,6,9,17] and the
references therein. In this paper we are interested in establishing exact blow-up rates for blow-up
solutions u of (1.1). That is, our goal is to derive the following estimates

C(T − t)−θi ≤ sup
x∈Ω

ui(t, x) ≤ C−1(T − t)−θi , i = 1,2 and t ∈ (0, T ), (1.2)

1 Bold face letters are used to denote vectors and all relations involving vectors are understood in the component-wise
sense.
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