

Available online at www.sciencedirect.com

Journal of Differential Equations

J. Differential Equations 256 (2014) 2526-2558

www.elsevier.com/locate/jde

Bounded solutions for a forced bounded oscillator without friction

Nicola Soave^{a,b}, Gianmaria Verzini^{c,*}

^a Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via Bicocca degli Arcimboldi 8, 20126 Milano, Italy ^b LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France ^c Dipartimento di Matematica, Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano, Italy

Received 4 June 2013; revised 11 December 2013

Available online 21 January 2014

Abstract

Under the validity of a Landesman–Lazer type condition, we prove the existence of solutions bounded on the real line, together with their first derivatives, for some second order nonlinear differential equation of the form $\ddot{u} + g(u) = p(t)$, where the reaction term g is bounded. The proof is variational, and relies on a dual version of the Nehari method for the existence of oscillating solutions to superlinear equations. © 2014 Elsevier Inc. All rights reserved.

MSC: primary 34B15; secondary 34C11, 49J35

Keywords: Landesman-Lazer conditions; Critical point theory; Subharmonic solutions to periodic ODEs; Ambrosetti-Prodi problems

1. Introduction

This paper concerns the existence of solutions, bounded on the real line together with their first derivative, for the differential equation

$$\ddot{u} + g(u) = p(t),\tag{1}$$

* Corresponding author.

E-mail addresses: n.soave@campus.unimib.it (N. Soave), gianmaria.verzini@polimi.it (G. Verzini).

^{0022-0396/\$ -} see front matter © 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jde.2014.01.015

where $g \in C^2(\mathbb{R})$ is bounded, increasing, and has exactly one inflection point, and $p \in C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ admits asymptotic average $A(p) \in \mathbb{R}$, that is

$$\lim_{T \to +\infty} \frac{1}{T} \int_{t}^{t+T} p(s) \, ds = A(p),$$

uniformly in $t \in \mathbb{R}$. Such an equation describes the forced motions of an oscillator exhibiting saturation effects. As a model problem, the reader may think to the equation

$$\ddot{u}$$
 + arctan $u = p(t)$,

even though we do not require any symmetry assumption on the reaction term g. Under the above assumptions, the main result we prove is the following theorem.

Theorem 1.1. Eq. (1) admits a bounded solution if and only if

$$g(-\infty) < A(p) < g(+\infty). \tag{2}$$

In such a case, Eq. (1) admits a countable set of bounded solutions, having arbitrarily large L^{∞} -norm.

The motivation for our investigation relies on the papers [1,6], which in turn have been inspired by some classical results of Landesman–Lazer type holding in the periodic framework. Such studies concern the equation

$$\ddot{u} + c\dot{u} + g(u) = p(t),\tag{3}$$

where $c \in \mathbb{R}$ and the continuous function g, not necessarily monotone, admits limits at $\pm \infty$, with the property that

$$g(-\infty) < g(s) < g(+\infty)$$

for every *s*. Also the cases $g(\pm \infty) = \pm \infty$ can be considered, requiring *g* to be sublinear at infinity if c = 0. When *p* is *T*-periodic, it is nowadays well known that Eq. (1) admits a periodic solution if and only if the Landesman–Lazer condition

$$g(-\infty) < \frac{1}{T} \int_{0}^{T} p(s) \, ds < g(+\infty)$$

is satisfied, regardless of the constant c; this result was first proved by Lazer, using the Schauder fixed point theorem, see [4]. When p is merely bounded, one would like to find analogous conditions for the search of bounded solutions. This problem was first studied by Ahmad [1], under the assumption that p has asymptotic average, in the sense explained above; by means of techniques of the qualitative theory of dissipative equations, the existence of a bounded solution is characterized, whenever $c \neq 0$, by (2). The case in which p is an arbitrary continuous function Download English Version:

https://daneshyari.com/en/article/4610592

Download Persian Version:

https://daneshyari.com/article/4610592

Daneshyari.com