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Abstract

In an exterior domain Ω ⊂ R
3 and a time interval [0, T ), 0 < T � ∞, consider the instationary Navier–

Stokes equations with initial value u0 ∈ L2
σ (Ω) and external force f = divF , F ∈ L2(0, T ;L2(Ω)). As

is well-known there exists at least one weak solution in the sense of J. Leray and E. Hopf with vanishing
boundary values satisfying the strong energy inequality. In this paper, we extend the class of global in time
Leray–Hopf weak solutions to the case when u|∂Ω

= g with non-zero time-dependent boundary values g.
Although uniqueness for these solutions cannot be proved, we show the existence of at least one weak
solution satisfying the strong energy inequality and a related energy estimate.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊂R
3 be an exterior domain with boundary of class C1,1, and let [0, T ), 0 < T �∞, be

a time interval. In Ω × [0, T ) we consider the instationary Navier–Stokes system with viscosity
ν > 0 and data f , g, u0 in the form
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ut − ν�u + u · ∇u + ∇p = f, divu = 0,

u|∂Ω
= g, u(0) = u0. (1.1)

For the data we assume the following:

f = divF, F ∈ L2(0, T ;L2(Ω)
)
, u0 ∈ L2

σ (Ω),

g ∈ L4(0, T ;W− 1
4 ,4(∂Ω)

) ∩ Ls0
(
0, T ;W− 1

q0
,q0

(∂Ω)
)
,

2

s0
+ 3

q0
= 1, 2 < s0 < ∞, 3 < q0 < ∞; (1.2)

the initial data u0 has to satisfy further assumptions to be introduced later, see Section 5.
A weak solution u to (1.1) will be constructed in the form u = v + E where E solves an in-

stationary Stokes system with the boundary data g, and v solves a type of Navier–Stokes system
with additional perturbation terms related to E but homogeneous Dirichlet data on ∂Ω . There-
fore, the problem splits into two almost independent parts, the construction of E as weak (or
very weak) solution of a Stokes system and the analysis of a perturbed Navier–Stokes system.
It is worth mentioning that the second step needs only very low assumptions on E known from
the theory of very weak solutions (E lies in Serrin’s class Ls0(0, T ;Lq0(Ω))) and from the clas-
sical theorem for weak solutions to satisfy the energy identity (E ∈ L4(0, T ;L4(Ω))); here the
assumptions on g and on u0 in (1.2) are not explicitly needed.

To be more precise, we have to find first of all a (so-called) very weak solution of the inho-
mogeneous Stokes system

Et − ν�E + ∇h = f0, divE = 0,

E|∂Ω
= g, E(0) = E0, (1.3)

see [2–6] and, for the case of exterior domains, [7], in Ω × [0, T ) with suitable data f0 = divF0
and E0; here ∇h means the associated pressure. At first sight, it seems to suffice to choose
f0 = 0, F0 = 0, but for later application it will be helpful to consider general data f0, F0, see
Assumption 1.6 to be used in Corollary 1.7 below. Setting

v = u − E, p̃ = p − h, f1 = f − f0, v0 = u0 − E0 (1.4)

we write (1.1) as a perturbed Navier–Stokes system with homogeneous boundary data v|∂Ω
= 0

vt − ν�v + (v + E) · ∇(v + E) + ∇p̃ = f1, divv = 0,

v|∂Ω
= 0, v(0) = v0 (1.5)

with the new perturbation terms

(v + E) · ∇(v + E) = div
(
v ⊗ v + (E ⊗ v + v ⊗ E) + E ⊗ E

);
here E ⊗ v = (Eivj )i,j=1,2,3 denotes the dyadic product of the vector fields E and v and the
divergence is taken columnwise, i.e., divE ⊗ v = (

∑3
i=1 ∂i(Eivj ))j=1,2,3 (= E · ∇v, since

divE = 0).
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