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Abstract

In this work we study the behaviour of travelling wave solutions for the diffusive Hutchinson equation
with time delay. Using a phase plane analysis we prove the existence of travelling wave solution for each
wave speed c � 2. We show that for each given and admissible wave speed, such travelling wave solutions
converge to a unique maximal wavetrain. As a consequence the existence of a nontrivial maximal wavetrain
is equivalent to the existence of travelling wave solution non-converging to the stationary state u = 1.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this article is to study the entire bounded and positive orbits of the following
second order delay differential equation:

−u′′(z) + cu′(z) = u(z)
(
1 − u(z − h)

)
for z ∈R, (1.1)
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with c > 0 and h > 0, together with the conditions at infinity

lim
z→−∞u(z) = 0 and lim inf

z→∞ u(z) > 0. (1.2)

The above problem arises when looking at travelling wave solutions with speed c of the so-called
Hutchinson equation, also referred to as the diffusive delayed logistic equation, which reads:

(∂t − �)U(t, x) = U(t, x)
[
1 − U(t − τ, x)

]
, t > 0, x ∈ R

N. (1.3)

A travelling wave solution with speed c in the unit direction e ∈ S
N−1 for the above equation is

an entire solution of the form

U(t, x) ≡ u(z) with z = xe + ct,

so that the profile u satisfies (1.1) with h = cτ .
When h = 0, that is τ = 0, we recover the classical Fisher–KPP equation. It is known since

the pioneering works of Kolmogorov, Petrovsky and Piskunov [16] and Fisher [9] in the 30s that
for all c � 2, Eqs. (1.1)–(1.2) with h = 0 admit a travelling wave solution u, which is increasing
and converges to 1 at +∞. The travelling wave with minimal speed c = 2 attracts, in a sense, the
solutions of initial value problems associated with compactly supported initial data. Hence, such
solutions model population invasion processes.

The introduction of delayed or nonlocal effects in reaction–diffusion equations is known to
give rise to nontrivial periodic steady states since the pioneering paper of Turing [24]. The equa-
tion

−u′′ + cu′ = u(1 − φ � u), (1.4)

where φ is an even probability distribution, has been introduced in [5,12,10] in an evolutionary
dynamics framework. Nontrivial periodic steady states could then be interpreted as the emer-
gence of new species. The existence of waves for such equations has been investigated by
Berestycki, Perthame, Ryzhik and the second author in [3]. The convergence of such waves
to 1 at +∞ is unclear, which lead these authors to introduce a generalized notion of travelling
waves, that we now adapt to Eq. (1.1).

Definition 1.1. (See [3].) We say that a positive solution u ∈ C2(R) of (1.1) is a travelling wave
(of speed c > 0) if it is bounded, it converges to 0 at −∞ and lim infz→+∞ u(z) > 0. In other
words, a travelling wave is a solution of:⎧⎪⎨⎪⎩

−u′′(z) + cu′(z) = u(z)
(
1 − u(z − h)

)
in R,

u is positive and bounded over R,

u(−∞) = 0, lim inf
z→+∞ u(z) > 0.

(1.5)

The existence of such waves for the nonlocal equation (1.4) was proved in [3] for all c � 2.
The monotonicity of such waves was completely characterized in [7]. Numerics indicate that such
waves might always converge to 1 [21], but this conjecture is only proved for large speeds [1]
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