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Abstract

We consider the Ostrovsky equation, which contains nonlinear dispersive effects. We prove that as the
diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak
solutions of the Ostrovsky–Hunter equation. The proof relies on deriving suitable a priori estimates together
with an application of the compensated compactness method in the Lp setting.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The nonlinear evolution equation

∂x

(
∂tu + u∂xu − β∂3

xxxu
) = γ u, (1.1)

with β and γ ∈ R was derived by Ostrovsky [18] to model small-amplitude long waves in a
rotating fluid of a finite depth. This equation generalizes the Korteweg–deVries equation (that
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corresponds to γ = 0) by the additional term induced by the Coriolis force. Mathematical prop-
erties of the Ostrovsky equation (1.1) were studied recently in many detail, including the local
and global well-posedness in energy space [6,11,14,23], stability of solitary waves [9,12,15], and
convergence of solutions in the limit of the Korteweg–deVries equation [10,15]. We rewrite (1.1)
in the following way⎧⎪⎪⎨

⎪⎪⎩
∂tu + u∂xu − β∂3

xxxu = γ

x∫
0

u(t, y) dy, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R,

(1.2)

or equivalently, ⎧⎪⎪⎨
⎪⎪⎩

∂tu + u∂xu − β∂3
xxxu = γP, t > 0, x ∈R,

∂xP = u, t > 0, x ∈R,

P (t,0) = 0, t > 0,

u(0, x) = u0(x), x ∈ R.

(1.3)

We are interested in the no high frequency limit, i.e., we send β → 0 in (1.1). In this way we
pass from (1.1) to the equation

{
∂x(∂tu + u∂xu) = γ u, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R.
(1.4)

Eq. (1.4) is known under different names such as the reduced Ostrovsky equation [19,22], the
Ostrovsky–Hunter equation [1], the short-wave equation [7], and the Vakhnenko equation [16,
20]. Integrating (1.4) with respect to x we gain the integro-differential formulation of (1.4) (see
[13])

∂tu + ∂x

(
u2

2

)
= γ

x∫
0

u(t, y) dy,

that is equivalent to

∂tu + ∂x

(
u2

2

)
= γP, ∂xP = u, P (·,0) = 0, u(0, ·) = u0. (1.5)

On the initial datum, we assume that

u0 ∈ L2(R) ∩ L4(R),

∫
R

u0(x) dx = 0, (1.6)

and on the function

P0(x) =
x∫

−∞
u0(y) dy, x ∈ R, (1.7)



Download English Version:

https://daneshyari.com/en/article/4610606

Download Persian Version:

https://daneshyari.com/article/4610606

Daneshyari.com

https://daneshyari.com/en/article/4610606
https://daneshyari.com/article/4610606
https://daneshyari.com

