
The Journal of Systems and Software 93 (2014) 24–41

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Controversy Corner

Predicting software defects with causality tests

Cesar Coutoa,b,∗, Pedro Piresa, Marco Tulio Valentea, Roberto S. Bigonhaa,
Nicolas Anquetilc

a Department of Computer Science, UFMG, Brazil
b Department of Computing, CEFET-MG, Brazil
c RMoD Team, INRIA, Lille, France

a r t i c l e i n f o

Article history:
Received 6 May 2013
Received in revised form 13 January 2014
Accepted 14 January 2014
Available online 5 February 2014

Keywords:
Defect prediction
Causality
Granger test

a b s t r a c t

In this paper, we propose a defect prediction approach centered on more robust evidences towards
causality between source code metrics (as predictors) and the occurrence of defects. More specifically,
we rely on the Granger causality test to evaluate whether past variations in source code metrics values
can be used to forecast changes in time series of defects. Our approach triggers alarms when changes
made to the source code of a target system have a high chance of producing defects. We evaluated our
approach in several life stages of four Java-based systems. We reached an average precision greater than
50% in three out of the four systems we evaluated. Moreover, by comparing our approach with baselines
that are not based on causality tests, it achieved a better precision.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Defect prediction is a central challenge for software engineer-
ing research (Basili et al., 1996; Zimmermann et al., 2008; D’Ambros
et al., 2010; Kamei et al., 2013). The goal is to discover reliable pre-
dictors that can indicate in advance those components of a software
system that are more likely to fail. Clearly, this information is of
central value for software quality assurance. For example, it allows
quality managers to allocate more time and resources to test—or
even to redesign and reimplement—those components predicted
as defect-prone.

Due to its relevance to software quality, various defect
prediction techniques have been proposed. Essentially, such tech-
niques rely on different predictors, including source code metrics
(e.g., coupling, cohesion, size) (Basili et al., 1996; Subramanyam and
Krishnan, 2003; Nagappan et al., 2006), change metrics (Hassan,
2009), static analysis tools (Nagappan and Ball, 2005; Araujo et al.,
2011; Couto et al., 2013), and code smells (D’Ambros et al., 2010).
Specifically, in a recent paper we reported a study showing the
feasibility of using causality tests to predict defects in software
systems (Couto et al., 2012). We relied on a statistical hypothesis

∗ Corresponding author at: Department of Computing, CEFET-MG, Brazil.
Tel.: +55 3186612513.

E-mail addresses: cesarfmc@dcc.ufmg.br, cesar@decom.cefetmg.br,
cesarfmc@gmail.com (C. Couto), ppires@dcc.ufmg.br (P. Pires), mtov@dcc.ufmg.br
(M.T. Valente), bigonha@dcc.ufmg.br (R.S. Bigonha), nicolas.anquetil@inria.fr
(N. Anquetil).

test proposed by Clive Granger to evaluate whether past changes
to a given source code metrics time series can be used to forecast
changes in defects time series. Granger test was originally proposed
to evaluate causality between time series of economic data (e.g., to
show whether changes in oil prices cause recession) (Granger,
1969, 1981). Although extensively used by econometricians, the
test was also used in bioinformatics (to identify gene regulatory
relationships, Mukhopadhyay and Chatterjee, 2007) and recently
in software maintenance (to detect change couplings spread over
an interval of time, Canfora et al., 2010). In our study, we found
that 64–93% of the defects in four well-known open-source systems
were detected in classes with a Granger-positive result between the
respective time series of source code metrics and defects.

In this paper, we leverage this initial study by proposing and
evaluating a defect prediction model based on causality tests. More
specifically, we not only report that Granger-causalities are com-
mon between time series of source code metrics and defects (which
is essentially a theoretical result), but we also propose a model that
relies on this finding to trigger alarms as soon as changes that are
likely to introduce defects in a class are made (i.e., a model that
can contribute effectively to software quality assurance practices).
Fig. 1 provides details on our approach for defect prediction. In
a first step, we apply the Granger test to infer possible Granger-
causalities between historical values of source code metrics and
the number of defects in each class of the system under analysis. In
this first step, we also calculate a threshold for variations in the val-
ues of source code metrics that in the past Granger-caused defects
in such classes. For example, suppose that a Granger-causality is
found between changes in the size of a given class in terms of lines

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2014.01.033

dx.doi.org/10.1016/j.jss.2014.01.033
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.01.033&domain=pdf
mailto:cesarfmc@dcc.ufmg.br
mailto:cesar@decom.cefetmg.br
mailto:cesarfmc@gmail.com
mailto:ppires@dcc.ufmg.br
mailto:mtov@dcc.ufmg.br
mailto:bigonha@dcc.ufmg.br
mailto:nicolas.anquetil@inria.fr
dx.doi.org/10.1016/j.jss.2014.01.033

C. Couto et al. / The Journal of Systems and Software 93 (2014) 24–41 25

Defect Prediction
Model Past changes like that

Granger-caused defects

Granger Test

Granger results
Alarm thresholds

Changed class

Source code metrics

Defects

Time Series

Alarm

Fig. 1. Proposed approach to predict defects.

of code (LOC) and the number of defects in this class. Considering
previous changes in this specific class, we can establish for exam-
ple that changes adding more than 50 lines of code are likely to
introduce defects in this class (more details on how such thresh-
olds are calculated in Section 3.3). Using these thresholds and the
Granger results calculated in the previous step, a defect predictor
analyzes each change made to a class and triggers alarms when
similar changes in the past Granger-caused defects.

Regarding our initial study, we also extended a dataset proposed
to evaluate defect prediction approaches, by almost doubling the
number of source code versions included in this dataset. Finally, we
evaluated our approach in several life stages of four open-source
systems included in the aforementioned dataset. Our approach
reached an average precision greater than 50% considering three
out of the four systems we evaluated. Moreover, our results show
that the precision of the alarms changes with time. For example,
for the Eclipse JDT Core, we achieved an average precision of 58%
considering 144 models covering seven years of the system’s his-
tory, and including a minimal and maximal precision of 27% and
90%, respectively. On the other hand, we were not able to predict
all defects using times series of source code metrics. On average,
we achieved recall rates ranging from 13% (Equinox Framework) to
31% (Lucene). In fact, we argue that it is not feasible to expect that
alarms based on source code metrics variations can cover the whole
spectrum of bugs reported to a system. Finally, we show that our
models outperform models that trigger alarms without considering
Granger-causality or that are based on linear regression techniques.

The remainder of this paper is organized as follows. We start
with an overview on Granger Causality (Section 2). Next, we
describe the steps to build the proposed model (Section 3), includ-
ing the time series extraction, the application of the Granger test,
and the identification of thresholds in metrics variations that may
lead to defects. Section 4 describes our dataset including time series
of source code metrics and defects for four real-world systems
(Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, and Lucene).
Section 5 describes a feasibility study designed to illustrate and
to evaluate the application of Granger on defects prediction. We
present an evaluation of the proposed model in Section 6. Section 7
discusses related work, and Section 8 concludes the paper.

2. Granger causality

In this section, we start first by describing a precondition that
Granger requires the time series to follow (Section 2.1). Next, we
present and discuss the test (Section 2.2).

2.1. Stationary time series

The usual pre-condition when applying forecasting
techniques—including the Granger test described in the next
subsection—is to require a stationary behavior from the time

series (Fuller, 1994). In stationary time series, properties such as
mean and variance are constant over time. Stated otherwise, a
stationary behavior does not mean the values are constant, but
that they fluctuate around a constant long run mean and variance.
However, most time series of source code metrics and defects
when expressed in their original units of measurements are not
stationary. The reason is intuitively explained by Lehman’s Law
of software evolution, which states that software measures of
complexity and size tend to grow continuously (Lehman, 1980).
This behavior is also common in the original domain of Granger
application, because time series of prices, inflation, gross domestic
product, etc. also tend to grow along time (Granger, 1981).

When the time series are not stationary, a common workaround
is to consider not the absolute values of the series, but their
differences from one period to the next one. More specifically,
suppose a time series x(t). Its first difference x′(t) is defined as
x′(t) = x(t) − x(t − 1).

Example 1. To illustrate the notion of stationary behavior, we
will consider a time series that represents the number of methods
(NOM), extracted for the Eclipse JDT Core system, in intervals of
bi-weeks, from 2001 to 2008. Fig. 2(a) illustrates this series. As we
can observe, the series is not stationary, since it has a clear growth
trend, with some disruptions along the way. Fig. 2(b) shows the
first difference of NOM. Note that most values are delimited by a
constant mean and variance. Therefore, NOM in first difference has
a stationary behavior.

2.2. Granger test

Testing causality between two stationary time series x and
y, according to Granger, involves using a statistical test—usually
the F-test—to check whether x helps to predict y at some stage
in the future (Granger, 1969). If this happens, we can conclude
that x Granger-causes y. The most common implementation of
the Granger Causality Test uses bivariate and univariate auto-
regressive models. A bivariate auto-regressive model includes past
values from the independent variable x and from the dependent
variable y. On the other hand, a univariate auto-regressive model
considers only past values of the variable y.

To apply Granger, we must first calculate the following bivariate
auto-regressive model (Canfora et al., 2010):

yt = ˛0 + ˛1yt−1 + ˛2yt−2 + · · · + ˛pyt−p + ˇ1xt−1

+ ˇ2xt−2 + · · · + ˇpxt−p + ut (1)

where p is the auto-regressive lag length (an input parameter of
the test) and ut is the residual. Essentially, p defines the number
of past values—from both x and y—considered by the regressive
models. Furthermore, Eq. (1) defines a bivariate model because it
uses values of x and y, limited by the lag p.

To test whether x Granger-causes y, the following null hypoth-
esis must be rejected:

H0 : ˇ1 = ˇ2 = · · · = ˇp = 0

This hypothesis assumes that past values of x do not add predic-
tive power to the regression. In other words, by testing whether the

 ̌ coefficients are equal to zero, the goal is to discard the possibility
that the values of x contribute to the prediction.

To reject the null hypothesis, we must first estimate the follow-
ing auto-regressive univariate model (i.e., an equation similar to
Eq. (1) but excluding the values of x):

yt = �0 + �1yt−1 + �2yt−2 + · · · + �pyt−p + et (2)

Download English Version:

https://daneshyari.com/en/article/461061

Download Persian Version:

https://daneshyari.com/article/461061

Daneshyari.com

https://daneshyari.com/en/article/461061
https://daneshyari.com/article/461061
https://daneshyari.com

