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We prove that if F ∈ C1(R) is coercive and {F ′ = 0} is discrete, then
the EFK equation

u′′′′ − c2u′′ + F ′(u) = 0 (1)

possesses L∞(R) solutions if and only if F ′ changes sign at least
twice. As a corollary we prove that if un solves

u′′′′
n + c2

nu′′
n + F ′(un) = 0,

then ‖un‖∞ → +∞ if cn → 0, provided F has a unique local mi-
nimum, its only minimum is nondegenerate and int({F ′ = 0}) = ∅.
Finally we give criteria ensuring existence and non-existence of
T -periodic solutions to (1) when F has multiple wells.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider a question raised by Lazer and McKenna in [4]. In [5,6], the equation

u′′′′ + c2u′′ + (1 + u)+ − 1 = 0 (1.1)
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was introduced as a model for traveling waves in suspension bridges. Eq. (1.1) can be also interpreted
as a Swift–Hohenberg equation with a non-smooth, single-well nonlinearity. As such, it has a wide
variety of applications in pattern formation (see, e.g., the book [9] and the references therein). One
property of solutions to (1.1) that soon became apparent from simulations, is that the bounded ones
are wildly oscillating when c → 0, in the sense that they must go to +∞ in the L∞-norm. Therefore
it is natural to expect that no bounded solutions to (1.1) can exist for c = 0. These two facts were
proven in [4], where the authors furthermore asked “whether the same conclusions can be reached for the
more interesting nonlinearity eu − 1 [. . .] Mathematically, we would also like a more general class of nonlin-
earity”. The nonlinearity eu − 1 is indeed the one employed by engineers instead of the non-smooth
one (1 + u)+ − 1 and the corresponding equation is usually known as the smooth suspended bridge
equation. Regarding the behavior as c → 0, an analogous blow-up result has been proved for the class
of homoclinic solutions in [3] for, roughly speaking, single-well potentials which are nondegenerate at
the minimum point. This is done proving an explicit lower bound on the L∞-norm of the solutions,
which blows up as c → 0 in (1.1). Regarding the non-existence result for c = 0, the case where the
nonlinearity is a generic cubic polynomial in u was already considered in [8].

In this paper, we try to answer Lazer and McKenna’s questions keeping the nonlinearity as general
as possible. As it turns out, the existence of bounded solution to

u′′′′ + F ′(u) = 0 (1.2)

with F being a smooth coercive potentials with discrete set of critical points, is actually equivalent to
F having at least two local minima. Moreover, this property extends to the more general equation

u′′′′ − pu′′ + F ′(u) = 0, (1.3)

for nonnegative values of p. In the case p � 0, (1.3) is called the Extended Fisher–Kolmogorov (in short,
EFK) equation, and its dynamics is very different from the Swift–Hohenberg case p = −c2 < 0 of
Eq. (1.1). We obtain the following result (see Theorems 3.1, 5.1).

Theorem 1.1. Let F ∈ C1(R) with {F ′ = 0} being discrete and limt→±∞ F (t) = +∞. Then, the following
alternative holds:

1. either F has a unique global minimum and no other local extrema, in which case Eq. (1.3) for p � 0 has
no bounded nonconstant solution on R,

2. or F has at least two local extrema, in which case (1.3) for p � 0 has a T -periodic nonconstant solution
for any sufficiently large T .

As a consequence of the non-existence result, we extend the results of [3] to bounded solutions
of (1.3).

Theorem 1.2. Let F ∈ C2(R) be a coercive potential with a unique global minimum t0 and no other local
extrema. If int({F ′ = 0}) = ∅ and F ′′(t0) > 0 then, for any family of bounded solutions {up} of (1.3) with
p < 0, it holds ‖up‖∞ → +∞ as p ↑ 0.

Notice that the potential eu − u − 1, corresponding to the nonlinearity eu − 1 in (1.2), satisfies all
the hypotheses of the previous two theorems. As a further corollary of Theorem 1.1 we prove the
following result, which was well known for the double-well model potential F (u) = (1 − u2)2/4 (see
[13, Theorem A]).

Theorem 1.3. Let F ∈ C1(R) be a coercive potential with {F ′ = 0} finite. Then, if T is sufficiently small, there
exists no nonconstant periodic solution to (1.3) for p � 0.
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