
The Journal of Systems and Software 93 (2014) 163–186

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Flexible resource monitoring of Java programs

Holger Eichelberger ∗, Klaus Schmid
Software Systems Engineering, University of Hildesheim, Marienburger Platz 22, 31141 Hildesheim, Germany

a r t i c l e i n f o

Article history:
Received 13 January 2014
Accepted 15 February 2014
Available online 27 February 2014

Keywords:
Resource monitoring
Software components
Performance engineering
Empirical analysis
Monitoring overhead
Java

a b s t r a c t

Monitoring resource consumptions is fundamental in software engineering, e.g., in validation of quality
requirements, performance engineering, or adaptive software systems. However, resource monitoring
does not come for free as it typically leads to overhead in the observed program. Minimizing this overhead
and increasing the reliability of the monitored data is a major goal in realizing resource monitoring tools.
Typically, this is achieved by limiting capabilities, e.g., supported resources, granularity of the monitoring
focus, or runtime access to results. Thus, in practice often several approaches must be combined to obtain
relevant information.

We describe SPASS-meter, a novel resource monitoring approach for Java and Android Apps, which
combines these conflicting capabilities with low overhead. SPASS-meter supports a large set of resources,
flexible configuration of the monitoring scope even for user-defined semantic units (components), run-
time analysis and online access to monitoring results in a platform-independent way. We discuss the
concepts of SPASS-meter, its architecture, realization and validation, the latter in terms of case studies
and an overhead analysis based on performance experiments with SPASS-meter, OpenCore and Kieker.
SPASS-meter provides a detailed view of the runtime resource consumption at reasonable overhead of
less than 3% processing power and 0.5% memory consumption in our experiments.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Monitoring is a fundamental activity in software engineering as
it is a perquisite to control and systematically improve the quality
of the software development process and the developed software.
Due to the ever increasing complexity of software, monitoring
approaches must provide efficient, scalable, and flexible access
to monitored properties. This is in particular true in the area of
software engineering approaches relying on runtime monitoring,
e.g., the engineering of adaptive software systems, as this requires
efficient and immediate (online) access to observed information.
However, fulfilling characteristics such as efficiency, scalability and
flexibility for a monitoring approach typically also increases the
costs of monitoring in terms of configuring a monitoring tool or its
impact on the observed system (monitoring overhead).

Monitoring software properties can be performed at various
points in time during the software lifecycle, in particular at devel-
opment time or at runtime of the System Under Monitoring (SUM).
Traditionally, monitoring at development time aims at detecting
problems such as bottlenecks or (accidental) excessive resource

∗ Corresponding author. Tel.: +49 5121 883762; fax: +49 5121 883 769.
E-mail addresses: eichelberger@sse.uni-hildesheim.de (H. Eichelberger),

schmid@sse.uni-hildesheim.de (K. Schmid).

consumption. For this purpose, profiling tools are applied most fre-
quently (Snatzke, 2008). Typically, tools which aim at monitoring
individual software properties within a SUM insert probes into the
SUM in order to collect data which is neither accessible from the
SUM nor from the execution environment. One example for such a
property is the memory consumed by an individual function of the
SUM. In order to make these properties accessible, profilers usually
collect large amounts of data to support generic analysis and, thus,
cause noticeable overheads on processing power and memory con-
sumption. For example, in Okanovic and Vidakovic (2011), these
overheads are characterized as “significant”; in Dmitriev (2003)
overheads for the NetBeans profiler of up to factor 50 have been
reported and in Eichelberger and Schmid (2012) we determined
the overhead of one specific profiler as 32% of the processing power.
For monitoring at development time such overheads are often not
so problematic, as these monitoring activities are typically not
time critical. In contrast, monitoring at runtime observes charac-
teristics of the SUM while it is actually being executed in the field
(Zanikolas and Sakellariou, 2005), e.g., to validate quality require-
ments, to analyze the quality of service, to observe the compliance
of service level agreements or even to manipulate the SUM (Bubak
et al., 2003). In the runtime case, overheads are very problematic
as they affect the user’s perception of the system’s quality as well
as the precision of the observed data, which, in turn, may affect the
adequacy of subsequent reactions.

http://dx.doi.org/10.1016/j.jss.2014.02.022
0164-1212/© 2014 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.jss.2014.02.022
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.02.022&domain=pdf
mailto:eichelberger@sse.uni-hildesheim.de
mailto:schmid@sse.uni-hildesheim.de
dx.doi.org/10.1016/j.jss.2014.02.022

164 H. Eichelberger, K. Schmid / The Journal of Systems and Software 93 (2014) 163–186

Fig. 1. Monitoring process.

Monitoring overhead can be mastered by focusing on certain
monitoring capabilities, such as limiting the number or types of
supported resources or restricting the supported forms of (online)
analysis. Thus, the challenge is to deal with these trade-offs in
order to enable deep insights at low overhead. The corresponding
research question in this article is:

Can we realize an efficient, scalable and flexible online monitoring
approach to observe a broad number of physical resources while
causing only a small runtime overhead?

The core idea of our approach is to enable the performance
engineer to focus on parts of interest of the SUM, in particular on
semantic units such as individual components or services. Accord-
ingly, the insertion of probes and the subsequent (online) data
analysis can be configured for those parts of interest and perform
more efficiently. In particular, this enables comparisons of the parts
of interest among each other as well as to the entire SUM, whereby
SUM-level monitoring is typically provided by the operation system
in an efficient manner. The relevant parts of the SUM are expressed
in terms of the monitoring scope, e.g., as the packages, classes or
methods the monitoring activities should be concentrated on. As
an example, let us assume that the performance engineer is inter-
ested in the resource consumption (here CPU and memory usage)
of the default and an alternative storage component. Then, moni-
toring shall observe these particular semantic units of the SUM and
the subsequent data analysis should support the comparative state-
ments (here including SUM-level information) such as: The default
storage component causes 23% of the total heap allocation with peaks
impacting the load of the entire device, while the alternative storage
component requires less heap allocation and no memory peaks. Con-
sequently, the monitoring scope focuses on the externally visible
interfaces of both components and implies dependent parts, e.g.,
due to method calls, but also the resource consumption of the entire
SUM.

The specification of the monitoring scope by the performance
engineer is the first step in the monitoring process illustrated in
Fig. 1. Using the scope configuration as input, in the instrumenta-
tion step, our monitoring tool SPASS-meter1 augments the SUM
with monitoring probes, i.e., additional code to obtain informa-
tion on individual resource consumptions. Probe insertion may be
done statically, i.e., before starting the SUM, or, alternatively, at
certain points in time during runtime of the SUM such as load
or initialization time. The data collection step is responsible for
receiving relevant resource consumption data from the probes.
Data aggregation determines the resource consumption of individ-
ual SUM parts. In SPASS-meter, data collection is interleaved with
data aggregation to reduce memory overhead, i.e., to avoid storing a
plethora of data needed to cope with dynamism and polymorphism

1 SPASS is the acronym for Simplifying the develoPment of Adaptive Software
Systems and SPASS-meter is one of the foundational building bricks of our work on
that topic. In German, the term “Spass” means “fun” and points to the tons of fun
we had while realizing this tool.

in object-oriented systems. Further data analysis and interpretation
is left to the performance engineer or additional systems that may
rely on live data or post-mortem summaries provided by SPASS-
meter.

In this article, we will focus on monitoring the resource con-
sumption of Java programs as SPASS-meter aims at Java SUMs.
Moreover, our approach and its implementation are designed to
support also other SUM types.

In summary, the core contributions for answering the research
question in this article are:

C1: Flexible definition of the monitoring scope expressing the
particular interest in a SUM. Individual methods or functions but
also entire classes or modules may be defined as members of logi-
cal monitoring groups. During analysis, the resource consumption
caused by a monitoring group is aggregated for the group mem-
bers and can be compared to other monitoring groups or to the
data aggregated for the entire SUM, the virtual machine or the
operating system.
C2: A large and configurable set of accountable resources,
namely CPU time, response time as consumed system time, mem-
ory allocation and memory use, network and file usage in terms of
transferred bytes and load as fraction of the CPU utilization. Basi-
cally, the relevant resources may be configured for the entire SUM
but also for individual monitoring groups.
C3: Multi-level data aggregation to relate the resource consump-
tion of individual monitoring groups with that of the total SUM,
the runtime environment or the entire system.
C4: Independence from the runtime environment, i.e., the
approach is portable as it does not require explicit modifications
to the runtime environment and can even be applied in resource-
restricted environments such as Android devices.
C5: Low monitoring overhead. Definition of the monitoring scope
as well as configuration of the considered resources helps avoiding
superfluous monitoring operations and, thus, supports in reducing
the monitoring overhead.

The remainder of this article is organized as follows: In Section 2,
we will discuss related work and provide a literature-based bench-
mark of related monitoring approaches. In Section 3, we will focus
on the flexible configuration of the monitoring scope (C1). In Sec-
tion 4, we will discuss the various types of resources supported by
SPASS-meter as well as the fundamental techniques and strategies
to realize monitoring probes for these resources (C2). In Section 5,
we will detail the various levels of data aggregation, including user-
specified monitoring groups as well as predefined system-specific
levels (C3). In Section 6, we focus on the efficient realization of
the concepts introduced before, i.e., the decisions leading to the
architecture of SPASS-meter, its independence from the runtime
environment (C4), as well as specific implementation tradeoffs. In
Section 7, we will validate the individual contributions and, thus,
our answer to the general research question in terms of case stud-
ies and performance experiments to determine the monitoring

Download English Version:

https://daneshyari.com/en/article/461069

Download Persian Version:

https://daneshyari.com/article/461069

Daneshyari.com

https://daneshyari.com/en/article/461069
https://daneshyari.com/article/461069
https://daneshyari.com

