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We study the weak boundary layer phenomenon of the Navier–
Stokes equations with generalized Navier friction boundary con-
ditions, u · n = 0, [S(u)n]tan + Au = 0, in a bounded domain in
R

3 when the viscosity, ε > 0, is small. Here, S(u) is the symmet-
ric gradient of the velocity, u, and A is a type (1,1) tensor on
the boundary. When A = α I we obtain Navier boundary condi-
tions, and when A is the shape operator we obtain the conditions,
u · n = (curl u) × n = 0. By constructing an explicit corrector, we
prove the convergence, as ε tends to zero, of the Navier–Stokes so-
lutions to the Euler solution both in the natural energy norm and
uniformly in time and space.
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1. Introduction

The flow of an incompressible, constant-density, constant-viscosity Newtonian fluid is described by
the Navier–Stokes equations,

⎧⎪⎨⎪⎩
∂uε

∂t
− ε�uε + (uε · ∇)uε + ∇pε = f in Ω × (0, T ),

div uε = 0 in Ω × (0, T ),

uε
∣∣
t=0 = u0 in Ω.

(1.1)
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The fluid is contained in the bounded domain, Ω ⊂ R
3, with smooth boundary, Γ . The parameter,

ε > 0, is the viscosity and T > 0 is fixed (see Theorem 2.2). The equations are to be solved for the
velocity of the fluid, uε , and pressure, pε , given the forcing function, f , and initial velocity, u0. The
regularity of Γ , f , and u0 that we assume is specified in (1.7), but our emphasis is not on optimal
regularity requirements. We also impose Navier boundary conditions on uε , described below, which
include the impermeable condition, uε · n = 0.

When ε = 0, we formally obtain the Euler equations,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u0

∂t
+ (u0 · ∇)u0 + ∇p0 = f in Ω × (0, T ),

div u0 = 0 in Ω × (0, T ),

u0 · n = 0 on Γ × (0, T ),

u0
∣∣
t=0 = u0 in Ω,

(1.2)

where n is the outer unit normal vector on Γ .
The Euler equations, being first-order, need only the impermeable boundary condition, u0 · n = 0,

reflecting no entry or exit of fluid from the domain. No-slip boundary conditions, uε = 0 on Γ , are
those most often prescribed for the Navier–Stokes equations. This, of necessity, leads to a discrepancy
between uε and u0 at the boundary, resulting in boundary layer effects. Prandtl [46] was the first to
make real progress on analyzing these effects, and much of a pragmatic nature has been discovered,
but to this day the mathematical understanding is woefully inadequate. (See [15,9,40,17] for reviews
of the mathematical literature. See [24], which builds on linear results of [18,19,25], for ill-posedness
of Prandtl’s boundary layer equations; [19] gives a review of earlier ill-posedness results. See [31,57,
60,10,33,34,49] for conditional results on convergence in the vanishing viscosity limit.)

In part because of these difficulties with no-slip boundary conditions, and in part because of very
real physical applications, researchers have turned to other boundary conditions. Of particular inter-
est are boundary conditions variously called Navier friction, Navier slip, or simply Navier boundary
conditions (other names have been used as well). These boundary conditions can be written as

uε · n = 0,
[
S
(
uε
)
n + αuε

]
tan = 0 on Γ, (1.3)

where

S(u) := 1

2

(∇u + (∇u)ᵀ
)=

(
1

2

∂u j

∂xi
+ 1

2

∂ui

∂x j

)
1�i, j�3

, for u = (u1, u2, u3). (1.4)

Here (x1, x2, x3) (or (x, y, z) in Section 3), denotes the Cartesian coordinates of a point x ∈ R
3, α is

the (positive or negative) friction coefficient, which is independent of ε. The notation [·]tan in (1.3)
denotes the tangential components of a vector on Γ .

In this paper, we use the generalization of (1.3),{
uε · n = 0 on Γ,[
S
(
uε
)
n
]

tan +Auε = 0 on Γ,
(1.5)

of the Navier boundary conditions. Here, A is a type (1,1) tensor on the boundary having at least
C2-regularity. In coordinates on the boundary, A can be written in matrix form as A = (αi j)1�i j�2.
Note that uε lies in the tangent plane, as does Auε .

It is easy to see that when A = α I , the product of a function α on Γ and the identity tensor, the
generalized Navier boundary conditions, (1.5), reduce to the usual Navier friction boundary conditions,
(1.3). In fact, the analysis using a general A in place of α I is changed only slightly from using α I with
α a constant (we say a bit more on this in Remark 2.4).



Download	English	Version:

https://daneshyari.com/en/article/4610709

Download	Persian	Version:

https://daneshyari.com/article/4610709

Daneshyari.com

https://daneshyari.com/en/article/4610709
https://daneshyari.com/article/4610709
https://daneshyari.com/

