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1. Introduction

The flow of an incompressible, constant-density, constant-viscosity Newtonian fluid is described by
the Navier-Stokes equations,

a &

T —eAut+ (U - Vu* +Vp®=f in2x(0,7),

divu® = in 2 x (0,T), (11)
uf (o = Uo in £2.
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The fluid is contained in the bounded domain, £2 c R, with smooth boundary, I". The parameter,
& > 0, is the viscosity and T > 0 is fixed (see Theorem 2.2). The equations are to be solved for the
velocity of the fluid, u?, and pressure, p®, given the forcing function, f, and initial velocity, ug. The
regularity of I', f, and ug that we assume is specified in (1.7), but our emphasis is not on optimal
regularity requirements. We also impose Navier boundary conditions on u®, described below, which
include the impermeable condition, u® -n=0.

When ¢ =0, we formally obtain the Euler equations,

P 0

SV VpO=f N2 x (0.T),

divu® =0 in 2 x (0,T), (12)
u®.n=0 onl" x (0,T),

u®|,_, =uo in £,

where n is the outer unit normal vector on I".

The Euler equations, being first-order, need only the impermeable boundary condition, u® - n =0,
reflecting no entry or exit of fluid from the domain. No-slip boundary conditions, u® =0 on I', are
those most often prescribed for the Navier-Stokes equations. This, of necessity, leads to a discrepancy
between uf and u® at the boundary, resulting in boundary layer effects. Prandtl [46] was the first to
make real progress on analyzing these effects, and much of a pragmatic nature has been discovered,
but to this day the mathematical understanding is woefully inadequate. (See [15,9,40,17] for reviews
of the mathematical literature. See [24], which builds on linear results of [18,19,25], for ill-posedness
of Prandtl’s boundary layer equations; [19] gives a review of earlier ill-posedness results. See [31,57,
60,10,33,34,49] for conditional results on convergence in the vanishing viscosity limit.)

In part because of these difficulties with no-slip boundary conditions, and in part because of very
real physical applications, researchers have turned to other boundary conditions. Of particular inter-
est are boundary conditions variously called Navier friction, Navier slip, or simply Navier boundary
conditions (other names have been used as well). These boundary conditions can be written as

ué -n=0, [S(u®)n +ocu8]tan =0 onTl, (1.3)
where
1 10u; 1 0u;
Sw):==(Vu+(Vu)T) = (——j+——) , foru=(uq,uy,u3). (1.4)

Here (x1,x2,x3) (or (x,y,2) in Section 3), denotes the Cartesian coordinates of a point ¥ € R3, « is
the (positive or negative) friction coefficient, which is independent of ¢. The notation [-]Jtan in (1.3)
denotes the tangential components of a vector on I'.

In this paper, we use the generalization of (1.3),

& o
{u n=0 onrl, (15)

[S(u's)n]tan +Au®=0 onTl,

of the Navier boundary conditions. Here, A is a type (1,1) tensor on the boundary having at least
C2-regularity. In coordinates on the boundary, A can be written in matrix form as A = (@ij)1<ij<2-
Note that u? lies in the tangent plane, as does Au®.

It is easy to see that when .4 = «I, the product of a function o on I and the identity tensor, the
generalized Navier boundary conditions, (1.5), reduce to the usual Navier friction boundary conditions,
(1.3). In fact, the analysis using a general A in place of «I is changed only slightly from using oI with
o a constant (we say a bit more on this in Remark 2.4).
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