
The Journal of Systems and Software 92 (2014) 59–70

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho mepage: www.elsev ier .com/ locate / j ss

Programmable context awareness framework

Bachir Chihania,b,∗, Emmanuel Bertina,b, Noël Crespib

a Orange Labs, 42 rue des Coutures, 14066 Caen, France
b Institut Mines-Telecom, Telecom SudParis, CNRS 5157, 9 rue Charles Fourier, 91011 Evry, France

a r t i c l e i n f o

Article history:
Received 28 September 2012
Received in revised form 9 July 2013
Accepted 22 July 2013
Available online 1 August 2013

Keywords:
Software engineering
Context-awareness
Privacy
Adaptation
XML

a b s t r a c t

Context-awareness enables applications to provide end-users with a richer experience by enhancing their
interactions with contextual information. Several frameworks have already been proposed to simplify
the development of context-aware applications. These frameworks are focused on provisioning context
data and on providing common semantics, definitions and representations of these context data. They
assume that applications share the same semantic, which limits the range of use cases where a framework
can be used, as that assumption induces a strong coupling between context management and application
logic. This article proposes a framework that decouples context management from application business
logic. The aim is to reduce the overhead on applications that run on resource-limited devices while still
providing mechanisms to support context-awareness and behavior adaptation. The article presents an
innovative approach that involves third-parties in context processing definition by structuring it using
atomic functions. These functions can be designed by third-party developers using an XML-based pro-
gramming language. Its implementation and evaluation demonstrates the benefits, in terms of flexibility,
of using proven design patterns from software engineering for developing context-aware application.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Two distinctive architectural approaches (Gutheim, 2011) have
been used to design context-aware applications: architectures that
follow a broker model and those based on a point-to-point model.
Both models contain two types of elements: context providers in
charge of collecting contextual data, and context consumers (i.e.,
context-aware applications) that use contexts to adapt their behav-
ior. In the first model, a context broker is used as an additional
element to decouple context providers and consumers, limiting
or eliminating the direct connections between them. This broker
is thus, in most cases, in charge of context modeling and infer-
ence (Gutheim, 2011; Naudet, 2011; Filho and Agoulmine, 2011;
Hamadache and Lancieri, 2010; van Sinderen et al., 2006). How-
ever, these tasks are performed in a pre-defined way and are barely
customizable by context consumers. As a result, the generated
information may not fully match the specific needs of consumers. In
the second model, context consumers know the providers and send
their requests to them directly (Oh et al., 2010). This model is less
sophisticated; context consumers need to know which provider

∗ Corresponding author at: Orange Labs, 42 rue des Coutures, 14066 Caen, France.
Tel.: +33 2 31 83 90 05.

E-mail addresses: bachir.chihani@orange.com (B. Chihani),
emmanuel.bertin@orange.com (E. Bertin), noel.crespi@it-sudparis.eu (N. Crespi).

should be addressed for any given contextual information and
should also be aware of their state (e.g., awake or asleep).

In both cases, consumers continuously request contextual infor-
mation from their sources (either the context broker or directly
from context providers) or subscribe to be notified with context
updates. Upon reception, this information must then be processed
by the context consumers to determine if it would impact their
behavior. When the updating load increases, consumers become
overloaded with messages, many of which are not at all relevant to
them. Moreover, consumers have to store and handle context infor-
mation locally to maintain a consistent vision of the user’s situation
and to adapt their behavior accordingly.

We have thus identified the need for a better separation within
context-aware architectures. The application business logic and the
context management operations should be kept separate, so that
one of these logics can be modified without having to modify the
other. To enable this separation, we propose to host all operations
related to context management in the context broker, outside of
context-aware applications. All of the context management oper-
ations to be executed in the broker will need to be specified with
an appropriate language. For a given context-aware application,
a script or a program written in this language will be executed
by the context broker as the specified context events occur (e.g.,
events from context providers). The result of each execution is then
sent back to the corresponding application, which does not have to
maintain or retrieve this data.

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.07.046

dx.doi.org/10.1016/j.jss.2013.07.046
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.07.046&domain=pdf
mailto:bachir.chihani@orange.com
mailto:emmanuel.bertin@orange.com
mailto:noel.crespi@it-sudparis.eu
dx.doi.org/10.1016/j.jss.2013.07.046

60 B. Chihani et al. / The Journal of Systems and Software 92 (2014) 59–70

We present a context management framework based on a bro-
ker architecture, which gives context consumers the ability to
design, via an XML-based scripting language, their specific context
processing that will be executed by the broker. This will allow con-
text handling to be centralized into the broker, instead of being
partially processed by the different context-aware services.

The rest of the paper is organized as follows. Section 2 presents
our motivations and challenges for building effective context
management architectures. Section 3 illustrates our framework
architecture and the implementation details. Case studies show-
ing the possible applications of the framework are presented in
Section 4. In Section 5, we present an evaluation of the proposed
framework through a real case study and performance evaluation in
a simulated environment. Section 6 discusses related work and the
proposed framework. Finally, we conclude the paper and present
future work in Section 7.

2. Motivation and challenges

In this section we highlight the benefits of a modular design of
context management frameworks by separating the main features
of the framework into different non-overlapping functions, thereby
making it much simpler to build different types of context-aware
applications.

2.1. Context-awareness

Context-awareness aims to enhance services (e.g., tracking, nav-
igation, information, communication, and entertainment services)
by making them sensitive to users’ situations, and therefore making
them more adapted to user’s needs (Chihani et al., 2011a). Context
management frameworks are used to empower the development of
such services by gathering context-related functions in a common
component and exposing its functionalities to third-party services
looking for context awareness.

Many of the efforts in building context management frame-
works are focused on specific domains (e.g., IPTV (Song et al.,
2010), IMS (IP Multimedia Subsystem) environments (Simoes and
Magedanz, 2011), and document management systems (Balinsky
et al., 2011)) making their proposed frameworks virtually impos-
sible to re-use for building context-aware applications in other
domains. Other works have proposed more generic frameworks
(Gutheim, 2011; van Sinderen et al., 2006; Plesa and Logrippo,
2007) enabling different types of applications to coexist and to be
built on top of these frameworks. However, these frameworks do
not offer customization capabilities – a serious lack since applica-
tions often have different requirements.

Our contribution is a generic framework, based on the Observer
design pattern (Gamma et al., 1994), which is flexible enough
to be customized for building context-aware applications in dif-
ferent domains. Herein, flexibility refers to dynamic adaptation,
customization and component reusability. The use of the Observer
pattern allows the framework core component (i.e., the con-
text broker) to be observed by third party applications context
consumers. In addition, these consumers can define, through a
specification document, the set of internal states of the bro-
ker they want to observe in order to be notified of any specific
changes. Furthermore, this specification defines how the frame-
work should process context data, as well as the application
callback address on which to be notified when an event of interest
occurs. When the broker processes new published context data, it
may change its internal state and as a result notifies the consumers
interested in these events by sending messages to their callback
addresses.

2.2. Design considerations

Contextual information is dynamic by nature. The measure-
ments change over time (e.g., temperature, location) with a variable
rate. Also, a context may lose consistency (become outdated or
incorrect) because the sensing operation may fail or the sensing
environment may become too noisy. These characteristics bring
a high degree of complexity to context management, and conse-
quently to context-aware applications, as context management is
usually coupled with application logic.

To address the dynamic characteristics of contextual infor-
mation and its complicated management issues, we identify the
following requirements for a ‘developer-friendly’ context manage-
ment framework:

• The framework should support the rapid development of
context-aware applications through the reduction of context
management complexity.

• To facilitate the re-use of the architecture in different environ-
ments (e.g., Telcos, Machine-to-Machine) the communication
protocol used to transport information between all components
of the architecture should be generic and not specific to a given
technology.

• Information representation should be very flexible so that appli-
cation developers are not forced to respect strict formatting rules
in order to circulate data among the architecture’s components.
Applications should be able to subscribe to a subset of all context
events generated by updates from providers for given contextual
information.

• The mechanisms provided to application developers for cus-
tomizing context processing should be kept as simple as possible
to reduce the learning curve for developers.

• The framework should provide appropriate mechanisms allow-
ing the respect of user privacy enabling users to grant or prohibit
third-party applications to access his/her context data and as a
result controlling the adaptation level of these applications.

3. Context management framework

3.1. Framework architecture

In order to meet these requirements, we propose a pro-
grammable framework (Fig. 1) for processing contextual infor-
mation, based on six primitive functions related to context
management: produce, filter, abstract, select, aggregate, and con-
sume. Each of these functions corresponds to a specific action from
the well-known layered approach (Schmidt, 2006; Chihani et al.,
2011a) in context management.

The “produce” function consists of producing raw contextual
information. It is implemented by context providers that wrap sen-
sors to comply with the framework API for publishing context.

The “filter” function provides signal processing functionali-
ties that aim to eliminate or at least reduce noise in contextual

Fig. 1. A layered framework for context management.

Download English Version:

https://daneshyari.com/en/article/461079

Download Persian Version:

https://daneshyari.com/article/461079

Daneshyari.com

https://daneshyari.com/en/article/461079
https://daneshyari.com/article/461079
https://daneshyari.com

