
The Journal of Systems and Software 92 (2014) 128–142

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me page: www.elsev ier .com/ locate / j ss

Architecture for embedded open software ecosystems

Ulrik Eklunda,∗, Jan Boschb

a Volvo Car Corporation, SE-405 31 Gothenburg, Sweden
b Chalmers University of Technology, Software Engineering Division, Department of Computer Science & Engineering, SE-412 96 Göteborg, Sweden

a r t i c l e i n f o

Article history:
Received 4 December 2012
Received in revised form
13 December 2013
Accepted 4 January 2014
Available online 25 January 2014

Keywords:
Software architecture
Embedded software
Software ecosystem

a b s t r a c t

Software is prevalent in embedded products and may be critical for the success of the products, but man-
ufacturers may view software as a necessary evil rather than as a key strategic opportunity and business
differentiator. One of the reasons for this can be extensive supplier and subcontractor relationships and
the cost, effort or unpredictability of the deliverables from the subcontractors are experienced as a major
problem.

The paper proposes open software ecosystem as an alternative approach to develop software for
embedded systems, and elaborates on the necessary quality attributes of an embedded platform under-
lying such an ecosystem. The paper then defines a reference architecture consisting of 17 key decisions
together with four architectural patterns, and provides the rationale why they are essential for an open
software ecosystem platform for embedded systems in general and automotive systems in particular.

The reference architecture is validated through a prototypical platform implementation in an industrial
setting, providing a deeper understanding of how the architecture could be realised in the automotive
domain.

Four potential existing platforms, all targeted at the embedded domain (Android, OKL4, AUTOSAR and
Robocop), are evaluated against the identified quality attributes to see how they could serve as a basis
for an open software ecosystem platform with the conclusion that while none of them is a perfect fit they
all have fundamental mechanisms necessary for an open software ecosystem approach.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Software is prevalent in many embedded products; cars, wash-
ing machines, mobile phones, airplanes and satellites (Ebert and
Jones, 2009). Typically these products are developed in large, and
sometimes very complex, industrial projects where the embed-
ded software may be critical for the success of the product but
the manufacturing and delivery of the product may be a heavier
investment than the software budget. This in turn tends to drive
the entire R&D process, and software just follows the process logic
of the mechanical development and manufacturing setup.

Original equipment manufacturers (OEM) of embedded prod-
ucts may view software in their products as a necessary evil rather
than as a key strategic opportunity and business differentiator. One
of the central reasons for this can be extensive supplier and sub-
contractor relationships and the cost, effort or unpredictability of

∗ Corresponding author. Present address: Malmö University, School of Technol-
ogy, Department of Computer Science, SE-205 06 Malmö, Sweden.
Tel.: +46 40 6657293.

E-mail addresses: ulrik.eklund@mah.se (U. Eklund),
jan.bosch@chalmers.se (J. Bosch).

the deliverables from external subcontractors are experienced as a
major problem.

Ebert and Jones (2009) mention factors contributing to com-
plexity in their survey of the present state of embedded software
development: “combined software/hardware systems equipped
with distributed software, computers, sensors, and actuators”
which points to the integration aspects of these systems. They list
“high demands on availability, safety, information security, and
interoperability” as typical quality attributes.

Broy (2006) states about automotive software “The speed of the
development, the complex requirements, the cost pressure and the
insufficient competency in the field bring enormous challenges and
risks”. We will hereafter use the automotive industry as a charac-
teristic context of embedded systems since cars are arguably the
most complex product with embedded software, both in terms of
conflicting requirements and subcontractor relationships.

We thus define the domain of large industrial development of
embedded systems in general, and the automotive domain in par-
ticular, by five characteristics:

• Deep integration between hardware and software for significant
parts of the functionality.

0164-1212/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2014.01.009

dx.doi.org/10.1016/j.jss.2014.01.009
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.01.009&domain=pdf
mailto:ulrik.eklund@mah.se
mailto:jan.bosch@chalmers.se
dx.doi.org/10.1016/j.jss.2014.01.009

U. Eklund, J. Bosch / The Journal of Systems and Software 92 (2014) 128–142 129

• Strong focus on manufacturing aspects of the product in the
development.

• Strong supplier involvement.
• Some parts realise safety-critical functionality.
• Long production life-time, i.e. mass-production.

But these mass-produced embedded systems (MPES) also
exhibit some inherent problems (Eklund and Bosch, 2012): Heavy
reliance on external developers and subcontractors complicates
coordination through process. Outsourcing of significant parts of
development to suppliers causes expensive communication and
coordination delays during integration. Exponentially growing fea-
ture content severely complicates “big-bang” integration.

Bosch (2009) described how companies transition from soft-
ware product lines to software ecosystems. This transition is driven
by a need to deliver functionality to customers faster than what
can be built in a reasonable amount of time by a single organisa-
tion, and with less R&D investment. He also stated that “extending
the product (which includes the platform) with externally devel-
oped components or applications provide an effective mechanism
for facilitating mass customisation.”

Bosch and Bosch-Sijtsema (2010) presented five approaches
to large-scale software development, ranging from integration-
centric to composition-oriented in an open software ecosystem.
The studied cases suggested the companies used a too integration-
oriented approach.

We will investigate an open software ecosystem as a sustainable
approach to develop software also for embedded systems, and in
the rest of the paper we elaborate on the necessary properties of an
embedded platform and design a reference architecture to facilitate
a successful establishment and growth of ecosystems for embedded
software. This is the second key activity proposed by Eklund and
Bosch (2012) for establishing ecosystems for embedded software.

Software ecosystems is a new research area, Jansen et al. (2009)
proposed a research agenda regarding ecosystems, and this paper
is a response to the “software vendor challenge 3 – architecting for
extensibility, portability, and variability” in that agenda. We have
only found a single study addressing this research challenge for the
embedded domain (Papatheocharous et al., 2013).

The research questions investigated are thus:

1 What are the key design decisions for an architecture in an open
software ecosystem for mass-produced embedded systems?
(a) What qualities must such an architecture satisfy?
(b) What architectural patterns are suitable for a reference archi-

tecture?
(c) Which existing platforms could serve as a basis for an ecosys-

tem platform?

2. Research methodology and problem

This paper follows the design research methodology (DRM) pro-
posed by Blessing and Chakrabarti (2009), with the four stages
depicted in Fig. 1. The resulting artefact from the design research
process being a reference architecture.

The research clarification stage of DRM, C in Fig. 1, explorers the
context of embedded software development and identifies some
problems in this context in Section 3. An open software ecosystem
was identified as a viable solution mitigating some of the identified
problems.

The first descriptive study stage, DS I in Fig. 1, identifies a set
of quality scenarios based on what is required of a reference archi-
tecture and associated embedded platform for an ecosystem. These
prerequisites are described in detail in Section 4.

Fig. 1. The research process, applied from the design research methodology (DRM)
framework by Blessing and Chakrabarti (2009).

The prescriptive study phase, PS in Fig. 1, defines the solu-
tion in terms of 17 architectural decisions together with a set of
architecture patterns. The reference architecture and platform are
described in detail in Section 5.

The second descriptive study stage, DS II in Fig. 1, evaluates the
architecture through (I) observations in an industrial case study,
(II) architectural analysis of four existing architecture frameworks
against the scenarios identified in the first descriptive stage. This is
described in Section 6.

2.1. Data collection and analysis

All data collected in the study was qualitative, and the evaluation
in the second descriptive stage (DS II) was qualitative. Thus any
scientific conclusions are also of a qualitative nature, i.e. answered
that the design of the artefact (i.e. the reference architecture) works,
not that it was optimal according to some quantitative measure.
This type of qualitative assessment is common practice in industry
(e.g. McGee et al. (2010), Ameller et al. (2012)).

The case data in Section 6.1 consist of working documents of
both product owner and Scrum team triangulated with personal
notes from the first author who was a participant/insider observer
in the project at the time.

The artefacts were evaluated through observational, analytical
and descriptive methods as categorised by Hevner et al. (2004):

• Observation in the case study in Section 6.1.
• Architectural analysis of designed artefacts based on available

documentation in Sections 6.2 and 6.3.
• Informed argument based on insider knowledge to show the arte-

facts’ utility in Section 6.1
• Scenarios describing the use of the artefact in the context,

described in Section 3.2

3. The context of embedded software development

Today manufacturers of mass-produced embedded products
range from focusing on efficient manufacturing of products with
the embedded software as difficult necessity to seeing software as
a key business differentiator. Many embedded domains, e.g. auto-
motive, have extensive supplier and subcontractor relationships,
often in many levels.

The most common approach to development of embedded
software is to use an integration-centric approach according
to the mapping study by Eklund and Bosch (2013). The study
surveyed existing literature to identify approaches to embed-
ded software development used in industry, excluding papers
describing academic proof-of-concept prototypes. The study was
performed similarly to a systematic literature review (Kitchenham
and Charters, 2007), and resulted in 28 cases described in 23 papers
from 2003 to 2012, of which the authors were involved in 4 papers

Download English Version:

https://daneshyari.com/en/article/461085

Download Persian Version:

https://daneshyari.com/article/461085

Daneshyari.com

https://daneshyari.com/en/article/461085
https://daneshyari.com/article/461085
https://daneshyari.com

