
J. Differential Equations 253 (2012) 1422–1438

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Mean-square random dynamical systems ✩

Peter E. Kloeden ∗, Thomas Lorenz

Institut für Mathematik, Goethe Universität, D-60054 Frankfurt am Main, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 December 2011
Revised 3 May 2012
Available online 29 May 2012

MSC:
primary 37H05, 60H10, 60H30
secondary 35R60, 60H15, 93E03

Keywords:
Random dynamical system
Nonautonomous process
Mean-square random attractor
Ultimate boundedness
Stochastic differential equations with
nonlocal sample dependence
Stochastic partial differential equation

The classical theory of random dynamical systems is a pathwise
theory based on a skew-product system consisting of a measure
theoretic autonomous system that represents the driving noise
and a topological cocycle mapping for the state evolution. This
theory does not, however, apply to nonlocal dynamics such as
when the dynamics of a sample path depends on other sample
paths through an expectation or when the evolution of random
sets depends on nonlocal properties such as the diameter of
the sets. The authors showed recently in terms of stochastic
morphological evolution equations that such nonlocal random
dynamics can be characterized by a deterministic two-parameter
process from the theory of nonautonomous dynamical systems
acting on a state space of random variables or random sets with
the mean-square topology. This observation is exploited here to
provide a definition of mean-square random dynamical systems
and their attractors. The main difficulty in applying the theory is
the lack of useful characterizations of compact sets of mean-square
random variables. It is illustrated through simple but instructive
examples how this can be avoided in strictly contractive cases
or circumvented by using weak compactness. The existence of
a pullback attractor then follows from the much more easily
determined mean-square ultimate boundedness of solutions.
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1. Introduction

The solution of a nonautonomous differential equation on R
d depends on both the actual time t

and the initial time t0 rather than just on the elapsed time t − t0 as in an autonomous system.
The solution mapping φ(t, t0, x0) of an initial value problem for which an existence and uniqueness
theorem holds then satisfies the initial value property, φ(t0, t0, x0) = x0, the two-parameter semigroup
evolution property

φ(t2, t0, x0) = φ
(
t2, t1, φ(t1, t0, x0)

)
, t0 � t1 � t2,

as well as the continuity property, (t, t0, x0) �→ φ(t, t0, x0) is continuous on the state space R
d .

These properties of the solution mapping can be used to define an abstract nonautonomous dy-
namical system. Dafermos [6] and Hale [8] called such an abstract nonautonomous dynamical system
a process. The asymptotic behavior of processes, in particular their pullback attractors, is investigated
in the monograph [14].

This term “process” is used here in a deterministic context and is not to be confused with a
stochastic process. Nevertheless, the solution mappings of stochastic differential equations on R

d also
define a deterministic two-parameter semigroup or process in the mean-square sense generalized to
allow for time-dependent domains of mean-square adapted random variables in R

d . A very early ver-
sion of this idea in a set-valued context can be found in [9] and more recently in [12]. The theory
presented here differs from that of random dynamical systems developed by Arnold [1] and others
(e.g. [3,4,7]), which involves a cocycle state mapping driven by stochastic process and pathwise con-
vergence.

The definition of a mean-square random dynamical system is given in the next section together
with definitions of forward and pullback attractors, and a theorem on the existence of pullback at-
tractors based on that of a pullback absorbing family is adapted from the literature. The application
of this theorem involves showing the mean-square ultimate boundedness of solutions and compact-
ness conditions in a space of mean-square random variables. The first is now a standard task [15,18],
but the second is difficult due to the lack of usable criteria for such compactness. Instead this dif-
ficulty is circumvented by restricting to uniformly contracting processes in Section 3 and to more
easily handled weak compactness in Section 5. Examples of stochastic differential equations with a
drift term satisfying a dissipative one-sided Lipschitz condition are given in Section 3, one a classical
SDE and the other a nonlocal SDE with the expectation of the solution in a coefficient. Their attrac-
tors consist of singleton sets, i.e., a single entire solution, which is attracting in both the forward
and pullback senses. In Section 4 the pullback asymptotic compactness of the process is established
via total boundedness for a nonlocal SDE with nonadditive noise. Finally, in Section 5 a stochastic
parabolic differential equation is considered and the existence of a weakly compact pullback attractor
is established.

2. Mean-square random dynamical systems

Let T = Z (discrete time case) or R (continuous time case) and define

T
2
� := {

(t, t0) ∈ T
2: t � t0

}
.

In addition, let (Ω,F , {Ft}t∈T,P) be a complete filtered probability space satisfying the usual hypoth-
esis, i.e., {Ft}t∈T is an increasing and right continuous family of σ -sub-algebras of F , which contains
all P-null sets. Essentially, Ft represents the information about the randomness at time t .

Finally, define X := L2(Ω,F;Rd) and Xt := L2(Ω,Ft;Rd) for each t ∈ T.

Definition 1. A mean-square random dynamical system φ on the underlying space R
d with a probability

set-up (Ω,F , {Ft}t∈R,P) is a family of mappings
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