

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Sturm-Liouville boundary value problems with operator potentials and unitary equivalence

Mark Malamud a,b, Hagen Neidhardt c,*

- ^a IAMM NAS of Ukraine, R. Luxemburg str. 74, 83114 Donetsk, Ukraine
- ^b Donetsk National University, Universitetskaya str. 24, 83050 Donetsk, Ukraine
- ^c WIAS Berlin, Mohrenstr. 39, D-10117 Berlin, Germany

ARTICLE INFO

Article history:

Received 17 February 2011 Revised 16 February 2012 Available online 17 March 2012

MSC:

34G10

47E05 47F05

47A20

47B25

Keywords:

Sturm-Liouville operators Operator potentials Elliptic partial differential operators Boundary value problems Self-adjoint extensions Unitary equivalence Direct sums of symmetric operators

ABSTRACT

Consider the minimal Sturm-Liouville operator $A = A_{min}$ generated by the differential expression

$$A := -\frac{d^2}{dt^2} + T$$

in the Hilbert space $L^2(\mathbb{R}_+,\mathcal{H})$ where $T=T^*\geqslant 0$ in \mathcal{H} . We investigate the absolutely continuous parts of different self-adjoint realizations of \mathcal{A} . In particular, we show that Dirichlet and Neumann realizations, A^D and A^N , are absolutely continuous and unitary equivalent to each other and to the absolutely continuous part of the Krein realization. Moreover, if $\inf \sigma_{\rm ess}(T) = \inf \sigma(T)$, then the part $\widetilde{A}^{ac}E_{\widetilde{A}}(\sigma(A^D))$ of any self-adjoint realization \widetilde{A} of A is unitarily equivalent to A^D . In addition, we prove that the absolutely continuous part \widetilde{A}^{ac} of any realization \widetilde{A} is unitarily equivalent to A^D provided that the resolvent difference $(\widetilde{A}-i)^{-1}$ $(A^{D}-i)^{-1}$ is compact. The abstract results are applied to elliptic differential expressions in the half-space.

© 2012 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	5876	
2.	Preliminaries		
	2.1. Boundary triplets and proper extensions	5880	

^{*} Corresponding author.

E-mail addresses: mmm@telenet.dn.ua (M. Malamud), neidhard@wias-berlin.de (H. Neidhardt).

	2.2.	Weyl functions and γ -fields	5881		
	2.3.	Krein type formula for resolvents and resolvent comparability	5882		
	2.4.	Spectral multiplicity function and unitary equivalence	5883		
3.	Direct	sums of symmetric operators	5885		
	3.1.	Definitions and examples	5885		
	3.2.	Boundary triplets for direct sums. Regularization construction	5888		
	3.3.	Direct sums of extremal extensions of non-negative symmetric operators and operators with			
		a gap	5890		
	3.4.	Ac-spectrum of direct sums of symmetric operators with arbitrary deficiency indices	5892		
	3.5.	Ac-spectrum of direct sums of symmetric operators with finite deficiency indices	5893		
4.	Sturm-	-Liouville operators with bounded operator potentials	5896		
	4.1.	The Dirichlet, the Neumann and the Krein realizations	5896		
	4.2.		5901		
5.		-Liouville operators with unbounded operator potentials	5903		
	5.1.	Regularity properties	5903		
	5.2.	Operators on the semi-axis: Spectral properties	5908		
6.		ations	5912 5914		
Acknowledgments					
Appen		Operators admitting separation of variables	5914		
	A.1.	Finite interval	5914		
	A.2.	Semi-axis	5916		
Appen		Spectral multiplicity function	5918		
Appen		Absolutely continuous closure	5920		
Appen		Linear relations	5920		
Refere	References				

1. Introduction

Let T be a non-negative unbounded self-adjoint operator in an *infinite* dimensional separable Hilbert space \mathcal{H} . We consider the minimal Sturm-Liouville operator A generated by the differential expression

$$A := -\frac{d^2}{dt^2} + T \tag{1.1}$$

in the Hilbert space $\mathfrak{H}:=L^2(\mathbb{R}_+,\mathcal{H})$ of \mathcal{H} -valued square summable vector-valued functions. Following [19,20] the minimal operator $A:=A_{\min}$ is introduced to be the closure of the operator A' defined by

$$A' := \mathcal{A} \upharpoonright \mathcal{D}_0, \quad \mathcal{D}_0 := \left\{ \sum_{1 \leqslant j \leqslant k} \phi_j(t) h_j \colon \phi_j \in W_0^{2,2}(\mathbb{R}_+), \ h_j \in \text{dom}(T), \ k \in \mathbb{N} \right\}, \tag{1.2}$$

where $W_0^{2,2}(\mathbb{R}_+):=\{\phi\in W^{2,2}(\mathbb{R}_+):\ \phi(0)=\phi'(0)=0\}$, that is, $A_{\min}:=\overline{A'}$. It is easily seen that A is a closed non-negative symmetric operator in $\mathcal H$ with equal deficiency indices $n_\pm(A)=\dim(\mathcal H)$. The adjoint operator A^* of $A=A_{\min}$ is the maximal operator denoted by A_{\max} . Self-adjoint extensions of A (are also called self-adjoint realizations of A) were investigated for the first time by M.L. Gorbachuk [19] in the case of finite intervals I. He proved that the traces of vector-functions $f\in \mathrm{dom}(A_{\max})$ belong to the space $\mathcal H_{-1/4}(T)$, cf. (5.2) and, in particular, $\mathrm{dom}(A_{\max})$ is not contained in the Sobolev space $W^{2,2}(I,\mathcal H)$. Based on this result he constructed a boundary triplet for the operator $A_{\max}=A_{\min}^*=A^*$ in the Hilbert space $L^2(I,\mathcal H)$ and described all self-adjoint realizations of $\mathcal A$ in terms of boundary conditions. These results are similar to those for elliptic operators in domains with smooth boundaries, cf. [4,24,34], and go back to classical papers of M.I. Višik [42] and G. Grubb [23].

Download English Version:

https://daneshyari.com/en/article/4611319

Download Persian Version:

https://daneshyari.com/article/4611319

<u>Daneshyari.com</u>