
The Journal of Systems and Software 86 (2013) 1408– 1425

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Lifetime and QoS-aware energy-saving buffering schemes

Liang Huai Yanga,b,∗, Jian Zhoua,b, Weihua Gonga,b, Jiakui Zhaoc, Lijun Chend

a School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
b Key Lab of Visual Media Intelligent Process Technology of Zhejiang Province, Hangzhou, China
c State Grid Electric Power Research Institute, Beijing, China
d School of Information Science and Technology, Peking University, Beijing, China

a r t i c l e i n f o

Article history:
Received 4 August 2012
Received in revised form 7 November 2012
Accepted 8 January 2013
Available online 18 January 2013

Keywords:
Energy conservation
Heterogeneous drive
Replacement policy
Buffering scheme
QoS

a b s t r a c t

The heterogeneous drive (HDrive), which combines solid-state disk (SSD) and HDD, brings opportunity
for energy-saving and has received extensive attention recently. This paper focuses on the file buffering
schemes and adaptive disk power management (DPM) scheme for HDrive. As for the first issue, we
propose a frequency–energy based replacement (FEBR) scheme based on an energy-cost model; as for
the second issue, we present a sliding-window based adaptive DPM scheme by taking the HDD’s lifetime
into account. To make the trade-off among performance, HDD’s lifetime and energy-saving, we contrive
a QoS-aware DPM scheme. With extensive experiments on four real-world traces, we have evaluated the
effectiveness of existing replacement schemes on energy-efficiency, performance, and HDD’s lifetime and
compare with our proposed schemes. The experimental results have demonstrated that energy-saving
in HDrive is feasible and can reach as high as 60–80%, and that FBR and its variant FEBR, and GDS are
the best ones among all those online schemes evaluated while FEBR has some advantage over FBR and
GDS on the whole. The results have also revealed that our proposed adaptive sliding-window-based DPM
scheme can effectively control the disk’s lifetime and the QoS-aware DPM scheme works well in making
tradeoffs among performance, HDD’s lifetime and energy-saving.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The energy consumption of storage subsystem takes up 20–30%
within general-purpose computer systems (Douglis et al., 1994;
Greenawalt, 1994); in data centers, it takes up 50% of the total
energy consumption in systems. What is more, the energy con-
sumption of storage subsystem is exacerbated by adding RAM
to improve system performance (Kgil and Mudge, 2009). As the
CPU architecture shifts from single core to multi-core, the energy
consumption of storage subsystem accounts greater proportion
in multi-core systems compared with single core systems (Geer,
2005). Many researchers have focused on reducing the energy
consumption of the storage subsystem from different perspec-
tives. The main idea is to predict the arrival time of next disk
request, and if the idle time is long enough, then the disk is turned
into low power state to save energy; when the access request
arrives, the disk spins up into active state immediately to serve the
request.

The advent of non-volatile, anti-vibration and low-power flash
memory brings new opportunities for energy-conservation. NAND

∗ Corresponding author at: School of Computer Science and Technology, Zhejiang
University of Technology, Hangzhou, China. Tel.: +86 13003628652.

E-mail addresses: yang.lianghuai@gmail.com, yanglh@zjut.edu.cn (L.H. Yang).

flash and SSD are now widely used, and how to use SSD to improve
energy efficiency has been a popular topic in recent years. To
fully utilize flash memory, smarter softwares are needed to drive
systems and systems are also needed to be re-designed to make
them faster, cheaper, greener and energy efficient. Narayanan et al.
(2009) considered that the current cost/GB of SSD is 3–3000 times
higher than HDDs, therefore it is hard to replace the role of HDD.
However, comparable energy savings are achievable with low-
power SATA disks if SSDs are used as the middle layer of the hybrid
hard drive for buffering or write-ahead logs. Graefe and Alto (2009)
pointed out that, within reasonable cost, the combination of SSD
and HDD could create more idle time for energy saving. Over the
past years there has been some research on this topic; we will
discuss them in the related work section.

This paper focuses on file-grain buffering scheme for energy
efficiency of heterogeneous drive. The basic idea is to buffer the fre-
quently accessed files in SSD to extend the HDD idle time, and thus
create the opportunity for the HDD to stay longer in the sleep/off
state. Such scheme is especially useful in the daily office work sce-
nario, where users usually focus on a certain piece of work within
a period of time and access a cluster of related files, which exhibits
strong access locality. Meanwhile, the performance is effectively
improved due to the read speed advantage of SSD. The conceptual
structure of the heterogeneous drive (HDrive) this paper investi-
gates is shown in Fig. 1.

0164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2013.01.014

dx.doi.org/10.1016/j.jss.2013.01.014
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:yang.lianghuai@gmail.com
mailto:yanglh@zjut.edu.cn
dx.doi.org/10.1016/j.jss.2013.01.014

L.H. Yang et al. / The Journal of Systems and Software 86 (2013) 1408– 1425 1409

Fig. 1. The conceptual architecture of a HDrive.

In this architecture, SSD is used as file buffer and the file system
is enhanced with a cost-based file buffer manager. The buffer man-
ager monitors file operations (read, write, create, delete, change) in
real-time, keeps track of file access statistics, admits/replaces files
and decides file movement and synchronization between SSD and
HDD. The power manager determines the state transition of HDD
when HDD file access requests arrive. In our proposed HDrive, files
can exist in both SSD and HDD. Newly created files only exist in
SSD, and are moved to HDD when they are selected as victims (
); file copies are retained in HDD when they are migrated to SSD
(), and those unmodified SSD files are simply abandoned when
replacement happens while those affected SSD files are flushed to
HDD (). This strategy trades space for performance.

For the file-grain energy saving in HDrive, one of the key issues
is to design an effective file replacement algorithm. The offline
optimal solution for caching files with different sizes and access
costs is NP-hard (Chrobak et al., 2010; Albers et al., 1999). Recently,
there are some online competitive analysis results for this problem
(Epstein et al., 2011; Young, 2002). Are those in-memory web server
caching algorithms (Podlipnig and Boszormenyi, 2003; Balamash
and Krunz, 2004; Wong, 2006) applicable for the case of energy
efficient HDrive? Or are those classical page replacement algo-
rithms such as LRU (Mattson et al., 1970) applicable? Since LRU,
a series of page caching algorithms are proposed, such as MRU, LFU
(Mattson et al., 1970), FBR (Robinson and Devarakonda, 1990), LRFU
(Lee et al., 2001), MQ (Zhou et al., 2001), 2Q (Johnson and Shasha,
1994), LRU-K (O’Neil et al., 1993), LIRS (Jiang and Zhang, 2002), ARC
(Megiddo and Modha, 2003) and CAR (Bansal and Modha, 2004);
each overcomes certain shortcomings of the other. One question is
that, in the file-grain scenario, which algorithm(s) perform(s) bet-
ter? In this respect, Liu et al. (2010) compared LRU with FBR, their
preliminary experimental results showed that HDrive achieved
good energy saving. And their work leaves us many questions to be
answered. For example, will the adaptive replacement algorithm
ARC, which outperforms LRU in page-grain scenario, still do so
in file-grain scenario and have better energy-saving effect? What
about other algorithms? There exist a multitude of replacement
policies; almost every strategy claims to outperform the others,
and sometimes even reaches conflicting conclusions. The reason is
that applications have different scenarios. No strategy can do well
in all scenarios. Considering the new scenario, is it necessary to
reinvent the wheel? The energy saving of HDrive relies on the HDD
on/off state transition, and the HDD on/off transitions affects the
HDD’s lifetime, so what kind of power strategy can ensure HDD’s
lifetime and still achieve good energy-efficiency? This paper aims
to answer these questions.

Our contributions are as follows:

(1) Comprehensive comparisons are made on various energy-
saving replacement schemes for HDrive. Their effectiveness on
hit rate, energy-efficiency, performance, and HDD’s lifetime
is evaluated with extensive experiments on four real-world
traces. And we draw some useful conclusions.

(2) Based on the energy-cost model, an improved scheme called
frequency–energy based replacement (FEBR) is proposed by
adapting the existing online replacement algorithms FBR. Web
cache algorithm GDS (Cao and Irani, 1997) does well too; FBR,
FEBR and GDS are better than the other on-line algorithms,
while FEBR is the best. The optimal page replacement algorithm
OPT (Belady, 1966) is not optimal anymore in file-grain buffer
scheme.

(3) To ensure HDD’s lifetime, an adaptive sliding-window based
disk power management mechanism is proposed. It saves
energy without compromising HDD’s lifetime. We find that the
traditional time-out duration of 5–10 s is not suitable for HDD’s
lifetime; it must be adjusted dynamically according to users’
access patterns. Experiments show that the proposed strategy
is effective.

(4) A QoS-aware disk power management scheme is proposed.
There exists a trade-off among performance, energy-saving
and disk’s lifetime. It is highly desired that user can enforce
an energy-saving HDrive without sacrificing too much perfor-
mance drop, say, ˛%. To the best of our knowledge, this is the
first attempt to tackle this trade-off.

This paper is organized as follows: Section 2 introduces the
related work; Section 3 describes the file-grain buffer replacement
algorithm framework for HDrive, the improved algorithm FEBR and
the (QoS-aware) adaptive disk power management scheme; Sec-
tion 4 presents experimental results; and Section 5 summarizes this
paper.

2. Related work

2.1. Hybrid storage

Flash memory was first introduced in 1988. Due to its potential
application value, various design combinations of flash memory
and HDD have been proposed to achieve certain desired goals on
the dimensions of price, capacity and performance. The ways of
combining flash memory and HDD can roughly be divided into two
categories: hybrid drive (Bisson and Brandt, 2007) and combo drive.
For hybrid drive, flash memory is integrated inside HDD as part of
it, and the granularity of allocating and scheduling is block. The goal
is to extend idle time of HDD. Bisson and Brandt (2005) used flash
memory as the read-only buffer of HDD to reduce the spin-ups.

A combo drive is the heterogeneous combination of SSD and
HDD with different characteristics, the caching granularity is in
block or file. Baker et al. (1992) proposed to use non-volatile ran-
dom access memory (NVRAM) as the file system buffer to improve
performance and reliability. Marsh et al. (1994) examined the
impact of flash memory as a second-level file system buffer cache
to reduce power consumption and file access latency on a mobile
computer. They used LRU and FIFO with a fixed timeout strategy
for HDD power control. Hsieh et al. (2007) used flash memory as
the disk buffer by mapping the disk blocks to the flash memory
with logical block addressing technology. Payer and Sanvido (2009)
proposed the combo drive strategy which is the combination of a
small capacity SSD and a large capacity HDD and used as a single
disk. Many standard file systems work with the assumption that
lower Logical Block Addresses (LBAs) are faster than higher LBAs,

Download	English	Version:

https://daneshyari.com/en/article/461146

Download	Persian	Version:

https://daneshyari.com/article/461146

Daneshyari.com

https://daneshyari.com/en/article/461146
https://daneshyari.com/article/461146
https://daneshyari.com/

