
The Journal of Systems and Software 85 (2012) 2096– 2103

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Differential fault analysis of ARIA in multi-byte fault models

Chong Hee Kim
Information Security Group, ICTEAM Institute, Université catholique de Louvain, Place Sainte Barbe, 2, Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 21 December 2011
Received in revised form 15 March 2012
Accepted 7 April 2012
Available online 20 April 2012

Keywords:
Cryptanalysis
Security
Differential fault analysis
Block cipher
ARIA

a b s t r a c t

Differential fault analysis exploits faults to find secret information stored in a cryptographic device. It
utilizes differential information between correct and faulty ciphertexts. We introduce new techniques
to improve the previous differential fault analysis of ARIA. ARIA is a general-purpose involutional SPN
(substitution permutation network) block cipher and was established as a Korean standard block cipher
algorithm in 2004. While the previous method by Li et al. requires 45 faults, our method needs 13 faults
to retrieve the 128-bit secret key of ARIA. If access to the decryption oracle is allowed, our method only
needs 7 faults. We analyze the characteristics of the diffusion layer of ARIA in detail, which leads us to
reduce the number of required faults to find the key.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Reliable computation is one of the main concerns in many
devices. Especially faults occurred during the operations cause
many problems such as performance deterioration, unreliable
output, etc. Hence, a lot of works to minimize, detect, or pre-
vent faults have been researched. Nowadays, we can easily find
cryptographic devices such as smart cards everywhere in our
daily lives from banking cards to SIM cards for GSM. These
devices are believed to be tamper-resistant. However, if a fault
occurs, an adversary may find the secret information stored in
the device. Therefore, we are challenging a new type of fault
problem.

More precisely, an adversary can find the key of a block cipher
using differential information between correct and faulty cipher-
texts. This kind of attack is called differential fault analysis (DFA).
A block cipher is widely used in many cryptographic applications
and has been studied extensively in the literature. Traditional crypt-
analysis of block cipher targets a cipher’s design and architecture
based on abstract and mathematical approaches. However, in prac-
tice a cipher has to be implemented on a real device that is exposed
to physical cryptanalysis such as side-channel attacks (Dhem et al.,
1998; Kocher et al., 1999; Quisquater and Samyde, 2001) and fault
attacks (Bar-El et al., 2004; Kim and Quisquater, 2007).

An adversary gets faulty ciphertexts by giving external impact
on a device with voltage variation, glitch, laser, etc. (Bar-El et al.,
2004). The first DFA presented by Biham and Shamir (1997) tar-
geted DES (National Institute of Standard and Technology, 1993).

The ways of exploiting faults to find the key are different accord-
ing to each algorithm. Therefore, finding an efficient attack for
each algorithm is main stream in the research of DFA. Up to
now almost all cryptosystems, for example, Triple-DES (Hemme,
2004), RC4 (Biham et al., 2005; Hoch and Shamir, 2004), CLEFIA
(Chen et al., 2007; Takahashi and Fukunaga, 2008), RSA (Coron
et al., 2010), ElGamal (Bao et al., 1998), IDEA (Clavier et al.,
2008), LUC and Demytko (Bleichenbacher et al., 1997), ECC (Blömer
et al., 2005; Ciet and Joye, 2005), AES (Piret and Quisquater,
2003; Moradi et al., 2006; Kim and Quisquater, 2008; Takahashi
et al., 2007; Barenghi et al., 2010; Kim, 2010), SMS4 and MacGuf-
fin (Li et al., 2009), DSA (Naccache et al., 2005), and ECDSA
(Schmidt and Medwed, 2009; Barenghi et al., 2011) have been
broken.

The research of DFA can be further diversified into several
directions: reducing the number of required faults, applying it to
multi-byte fault models, extending to variants, if they exist, or
exploring faults induced at an earlier round. In this article, we intro-
duce new fault attacks on ARIA based on multi-byte fault models
that needs less faults than the previous one.

ARIA is a general-purpose involutional SPN (substitution
permutation network) block cipher algorithm, optimized for
lightweight environments and hardware implementation. The
name ARIA was taken from the initials of Academia, Research Insti-
tute and Agency, acknowledging the co-operative efforts of Korean
researchers in designing ARIA. In 2004, ARIA was established as a
Korean standard block cipher algorithm (KS X 1213) by the Ministry
of Knowledge Economy (ARIA).

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.04.009

dx.doi.org/10.1016/j.jss.2012.04.009
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
dx.doi.org/10.1016/j.jss.2012.04.009

C.H. Kim / The Journal of Systems and Software 85 (2012) 2096– 2103 2097

Fig. 1. State of ARIA.

Several traditional cryptanalysis (Wu et al., 2007; Li and Song,
2008; Li et al., 2008; Fleischmann et al., 2009) and side-channel
analysis of ARIA (Ha et al., 2005; Kim et al., 2008; Park et al.,
2007; Yoo et al., 2006) have been proposed. However, there is
only one result of DFA of ARIA (Li et al., 2008). While the pre-
vious method by Li et al. (2008) requires 45 faults to retrieve
the key, our method based on a two-byte fault model needs
13 faults. If access to the decryption oracle is allowed, our
method needs 7 faults. Our generalized attack, working with faults
corrupting a maximum of 4 bytes, can find the key with 21
faults.

This article is organized as follows: Section 2 introduces the
ARIA algorithm. The next section briefly describes the previous
work by Li et al. and explains our new techniques. Section 4 dis-
cusses possible countermeasures. Finally Section 5 concludes the
article.

2. ARIA algorithm

ARIA is a 128-bit SPN block cipher1 with 128-bit, 192-bit,
or 256-bit key, where the number of rounds is 12, 14, and 16,
respectively (ARIA, in press; Kwon et al., 2003). In the sequel, we
will use the 128-bit key version of ARIA cipher, unless otherwise
stated.

2.1. Structure of ARIA

The 128-bit input block passes through a round function, which
is iterated 12 times (see Fig. 2). The intermediate cipher result,
called State, can be represented as a two-dimensional byte array
with 4 rows and 4 columns. The Si = (Si

0, . . . , Si
15) at round i is thus

represented by an array as shown in Fig. 1.
The encryption and decryption processes are identical except

the use of round keys. Each round consists of the following three
parts:

- Round key addition: the State is XORed with a 128-bit subkey.
- Substitution layer (SL): the State goes through 16 S-boxes. There

are 2 different substitutions, types 1 and 2, which alternate
between the rounds.

- Diffusion layer (DL): it is a function which maps an input (x0, x1,
. . ., x15) of 16 bytes into an output (y0, y1, . . ., y15). The mapping
can also be considered as a 16 × 16 binary matrix multiplication
as follows:

1 ARIA has three versions according to slightly different key expansion methods:
V0.8, V0.9 and V1.0. We use the latest standard version, V1.0 (ARIA).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the last round, instead of the diffusion layer, there is another
key addition.

2.2. Key expansion of ARIA

The ARIA key expansion consists of two parts: initialization
and subkey generation. In the initialization part, four 128-bit val-
ues, W0, W1, W2, and W3, are generated from the master key by
using a 3-round Feistel cipher. Then the subkeys are generated
by a sequence of XOR, rotate-right and rotate-left operations as
follows:

ek1 = W0 ⊕ W≫19
1 , ek2 = W1 ⊕ W≫19

2 , ek3 = W2 ⊕ W≫19
3 ,

ek4 = W≫19
0 ⊕ W3, ek5 = W0 ⊕ W≫31

1 , ek6 = W1 ⊕ W≫31
2 ,

ek7 = W2 ⊕ W≫31
3 , ek8 = W≫31

0 ⊕ W3, ek9 = W0 ⊕ W≪61
1 ,

ek10 = W1 ⊕ W≪61
2 , ek11 = W2 ⊕ W≪61

3 ,

ek12 = W≪61
0 ⊕ W3, ek13 = W0 ⊕ W≪31

1 .

The subkeys for decryption are derived from the subkeys for
encryption as follows:

dk1 = ek13, dk2 = DL(ek12), . . . ,
dk12 = DL(ek2), dk13 = ek1.

2.3. Notations

We use the following notations to describe ARIA. We denote by
X ∈ ({0, 1}8)16 the plaintext and by Y ∈ ({0, 1}8)16 the ciphertext.
The ith subkey is denoted by eki ∈ ({0, 1}8)16, 1 ≤ i ≤ 13. We denote
by Ai = (a0,i, a1,i, a2,i, . . ., a15,i) and Bi = (b0,i, b1,i, b2,i, . . ., b15,i) the
input and the output of the substitution layer at round i, 1 ≤ i ≤ 12,
respectively. We denote by Ci = (c0,i, c1,i, c2,i, . . ., c15,i) the output
of the linear layer at round i, 1 ≤ i ≤ 12 (see Fig. 2). We denote
by A∗

i
= (a∗

0,i
, a∗

1,i
, a∗

2,i
, . . . , a∗

15,i
) and B∗

i
= (b∗

0,i
, b∗

1,i
, b∗

2,i
, . . . , b∗

15,i
)

the faulty input and output of the substitution layer at round i,
1 ≤ i ≤ 12, respectively. The faulty output of the linear layer at round
i is denoted by C∗

i
= (c∗

0,i
, c∗

1,i
, c∗

2,i
, . . . , c∗

15,i
), 1 ≤ i ≤ 12.

Let �Ai = (�a0,i, �a1,i, �a2,i, . . ., �a15,i) be the difference
between Ai and A∗

i
, 1 ≤ i ≤ 12. We denote by �Bi and �Ci the dif-

ference between Bi and B∗
i
, and Ci and C∗

i
, 1 ≤ i ≤ 12, respectively.

We denote by SL(Ai) the output of 128-bit substitution layer for
the input Ai, 1 ≤ i ≤ 12. We denote by SL−1(Bi) the output of the
inversion of 128-bit substitution layer for the input Bi, 1 ≤ i ≤ 12.
Let DL(Bi) be the output of 128-bit diffusion layer for the input

Download English Version:

https://daneshyari.com/en/article/461160

Download Persian Version:

https://daneshyari.com/article/461160

Daneshyari.com

https://daneshyari.com/en/article/461160
https://daneshyari.com/article/461160
https://daneshyari.com

