The Journal of Systems and Software 84 (2011) 2123-2138

Contents lists available at ScienceDirect Bl

L

of
ans

Iy
AT

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Evaluating the impacts of dynamic reconfiguration on the QoS of running systems
Wei Li*

Centre for Intelligent and Networked Systems, and School of Information & Communication Technology, Central Queensland University, Rockhampton, QLD 4702, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 27 June 2010

Received in revised form 18 May 2011
Accepted 25 May 2011

Available online 12 July 2011

A major challenge in dynamic reconfiguration of a running system is to understand in advance the impact
on the system’s Quality of Service (QoS). For some systems, any unexpected change to QoS is unaccept-
able. In others, the possibility of dissatisfaction increases due to the impaired performance of the running
system or unpredictable errors in the resulting system. In general it is difficult to choose a reasonable
reconfiguration approach to satisfy a particular domain application. Our investigation on this issue for
dynamic approaches is four-fold. First, we define a set of QoS characteristics to identify the evaluation cri-
teria. Second, we design a set of abstract reconfiguration strategies bringing existing and new approaches
into a unified evaluation context. Third, we design a reconfiguration benchmark to expose a rich set of
QoS problems. Finally, we test the reconfiguration strategies against the benchmark and evaluate the
test results. The analysis of acquired results helps to understand dynamic reconfiguration approaches
in terms of their impact on the QoS of running systems and possible enhancements for newer QoS

Keywords:

Dynamic reconfiguration
QoS assurance

Software maintenance
Software evolution
Quantitative analysis

capability.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic reconfiguration is a widely studied topicin the runtime
evolution of software systems. One way to assist appropriate use of
a particular dynamic reconfiguration approach is to understand the
impact that the approach may have on a running system. This arti-
cle conducts an evaluation with respect to Quality of Service (QoS),
by which we refer to end-user observable performance attributes
such as throughput and response time of a running system, and QoS
assurance, by which we refer to the capability of a reconfiguration
approach to maintain pre-determined QoS levels for a running sys-
tem under reconfiguration (RSUR). The background and necessity
of this research are as follows.

It is necessary for a software system to evolve continuously
in order to remain useful (Kramer & Magee, 1990; Soria et al.,
2009; Vandewoude et al., 2007). This evolution adapts the sys-
tem to the changing business needs that diverge from the original
requirements placed upon it (Morrison et al., 2007). The evolution
comprises incremental upgrade of the functionality and modifica-
tion of the topology of a software system (Fung & Low, 2009). In its
lifecycle, a software system may evolve multiple times; a reconfig-
uration refers specifically to a specific process of reconfiguration at
a specific point in the history of a system evolution.

The evolution of software systems can be accomplished by static
or dynamic reconfiguration. Static reconfiguration involves stop-
ping a running system, recompiling its binaries, rebuilding its data,

* Tel.: +61 7 4930 9686; fax: +61 7 4930 9729.
E-mail address: w.li@cqu.edu.au

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.,js5.2011.05.060

altering its topology and then restarting the system. A static recon-
figuration is performed out of band and is therefore not viable for
the applications that are featured as mission-critical or uninter-
ruptible (Vandewoude et al., 2007). For mission-critical services or
24/7 business services, such as those described by Warren et al.
(2006), a running system cannot be reconfigured statically due to
unacceptable down time. For other systems, down time reduces
the productivity of users and increases costs for the businesses
(Patterson, 2002).

Dynamic reconfiguration involves upgrading/altering a system’s
functionality and topology at runtime via addition, deletion and
replacement of components and connections. Dynamic reconfigu-
ration promotes service availability and self-adaptation because it
is able to make reconfiguring or adaptive steps as a part of normal
system execution.

From the early work of Kramer and Magee (1990) to the recent
work of Morrison et al. (2007), Soria et al. (2008, 2009) and
Vandewoude et al. (2007), dynamic reconfiguration has advanced
significantly in modeling (Ajmani et al., 2006; Almeida et al., 2004;
Dowling & Cahill, 2001a,b; Warren et al., 2006) and implementa-
tion (Evans, 2004; Janssens et al., 2007; Kim & Bohner, 2008; Rasche
& Polze, 2008; Tewksbury et al., 2001; Truyen et al., 2008).

However, recently Vandewoude et al. (2007) re-investigated a
typical dynamic approach (Kramer & Magee, 1990) and noted that
it could result in significant disruption to the application being
updated. That work raised the issue that impact evaluation is sig-
nificant for dynamic reconfiguration.

Moreover, existing approaches have been evaluated individ-
ually, but not quantitatively compared in a unified evaluation
context. As a result, the questions: how is dynamic reconfiguration


dx.doi.org/10.1016/j.jss.2011.05.060
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:w.li@cqu.edu.au
dx.doi.org/10.1016/j.jss.2011.05.060

2124 W. Li / The Journal of Systems and Software 84 (2011) 2123-2138

different from static reconfiguration, and how are dynamic approaches
different from each other remain open.

In this article we argue that addressing dynamic reconfiguration
on a running system without systematic evaluation increases the
possibility of user dissatisfaction, due to impaired performance or
unpredictable errors. Furthermore, without comparison, it is diffi-
cult for a developer to choose the right dynamic approach to satisfy
a particular domain application or enhance an available approach
for a new use.

This article argues that evaluation of dynamic reconfiguration
is a quantitative rather than simply qualitative issue as described
as follows: (1) keeping a system operational under reconfiguration
(Dowling & Cahill, 2001a,b; Kramer & Magee, 1990); (2) supporting
changes to an application’s structure and functionality at runtime
without shutting it down (Fung & Low, 2009); and (3) integrating
new components, or modifying or removing existing ones while a
system is running (Soria et al., 2009). The non-stop feature (avail-
ability) is just a qualitative aspect and far from an appropriate
ground for successful dynamic reconfiguration. The premise that
dynamic reconfiguration is more suitable for software evolution
lies in its promotion for the QoS assurance of a RSUR. Otherwise
static reconfiguration is more acceptable in terms of simplicity.

The limitations of the state-of-the-art as compared with a sys-
tematic evaluation are:

1. there is no set of unified criteria to evaluate the impact of
dynamic reconfiguration on the QoS of a RSUR;

2. there is no evaluation benchmark covering a rich set of available
QoS scenarios;

3. there is no abstraction or representation for modeling available
reconfiguration approaches in a unified evaluation context;

4. there is no evaluation on the QoS of a RSUR with respect to the
common QoS metrics: throughput and response time;

5. there is no identification or comparison of the QoS assurance
capabilities offered by alternative approaches.

Reconfiguration approaches have been evaluated with respect
to isolated criteria (as reviewed in the next section), but they have
not been realized into a unified evaluation context. Therefore, little
quantitative comparison in terms of impact on the QoS of RSURs
between these approaches can be found in the current literature.

This article addresses these gaps by proposing an evaluation
method and an evaluation benchmark, and conducting a set of
experimental evaluations. The stimulus for this article is prior work
(Li, 2009) which explores QoS assurance for dynamic reconfigura-
tion of dataflow systems. The novelty of this article with respect to
the prior work lies in that it develops the original evaluation ideas
into a more systematic evaluation. Thus the novel contributions of
this article are to:

1. propose fundamental QoS characteristics as the criteria to
evaluate QoS assurance capabilities of available dynamic recon-
figuration approaches;

2. propose criteria for discovering the QoS assurance capability of
a given approach;

3. propose a representation model to model abstractly available
dynamic approaches so that they can be evaluated and compared
on a unified evaluation context;

4. introduce a more complex (therefore more realistic) reconfigu-
ration scenario to accommodate a richer set of reconfiguration
problems;

5. design an evaluation benchmark to expose existing QoS prob-
lems and facilitate the quantitative measurement of QoS in terms
of throughput and responsiveness;

6. evaluate and compare the QoS assurance capabilities of existing
dynamic approaches.

The remainder of this article is structured as follows. A detailed
review of related work in particular with respect to evaluation of
dynamic reconfiguration approaches is presented in Section 2. A
set of evaluation criteria for QoS assurance capabilities is proposed
in Section 3. A qualitative classification of available reconfiguration
approachesis presented in Section 4. A set of criteria for discovering
QoS assurance capabilities of existing reconfiguration approaches is
proposed in Section 5. An evaluation benchmark and its two archi-
tectural prototypes are presented in Section 6. New reconfiguration
strategies are proposed as abstraction and realization of available
approaches in Section 7. The reconfiguration strategies are evalu-
ated and compared for their QoS assurance capabilities in Section 8.
Section 9 concludes by outlining the QoS evaluation results arising
out of this research.

2. Related work

Related work varies with respect to the kind that dynamic recon-
figuration approaches are evaluated.

2.1. Individual evaluation

Some dynamic approaches have been evaluated only with
respect to local, isolated criteria. In Bidan et al. (1998) a simple
client/server application was used as a case study to evaluate the
proposed reconfiguration algorithm for its overhead as measured
by reconfiguration time. The case study has limitations making it
unsuitable for more inclusion in a more extensive evaluation, due to
a lack of complexity, flexibility, and coverage of existing QoS prob-
lems. Ajmani et al. (2006) evaluated the reconfiguration framework
Upstart. To evaluate the overhead imposed by a so-called upgrade
layer dedicated to dynamic reconfiguration they tested 100,000
null RPC (Remote Procedure Call) loopback calls and crossover calls;
100 TCP transfers of 100MB data were conducted. The time con-
sumed by the operations was used to compare the performance
between the base framework (without upgrade layer) and Upstart.
The results showed that the upgrade layer introduced only mod-
estoverhead. Truyen et al. (2008) reported the reconfiguration time
for adding, removing and replacing a fragmentation service for their
case study, an Instant Messaging Service. The overhead of introduc-
ing a reconfiguration proxy was reported to be insignificant, but it
is not clear to what extent this result generalizes.

The most recent evaluations of reconfiguration overhead
include Leger et al. (2010) and Surajbali et al. (2010). Both reported
overhead at reconfiguration time. The former compared reconfig-
uration with and without Java RMI (Remote Method Invocation)
transactions, and the latter compared reconfiguration with and
without COF (Consistency Framework).

Two important works in dynamic reconfiguration are quiescence
(Kramer & Magee, 1990) and tranquility (Vandewoude et al., 2007).
Quiescence refers to a system state where a node (software com-
ponent) is not involved in any transactions and will neither receive
nor initiate new transactions. Quiescence is proved by Kramer
and Magee (1990) to be a sufficient condition for preservation of
application consistency during dynamic updates. Improving on qui-
escence, tranquility exploits the notion of a minimal passivated set
of components for reducing disruption on the ongoing transactions.
Although Vandewoude et al. theoretically analyzed that tranquil-
ity has less disruption than quiescence, they did not conduct any
quantitative comparisons between tranquility and quiescence in
terms of disruption to the QoS of a RSUR. This is evidenced by
the following. In Vandewoude et al. (2007), a tranquility-based



Download English Version:

https://daneshyari.com/en/article/461177

Download Persian Version:

https://daneshyari.com/article/461177

Daneshyari.com


https://daneshyari.com/en/article/461177
https://daneshyari.com/article/461177
https://daneshyari.com/

