
The Journal of Systems and Software 84 (2011) 2234– 2252

Contents lists available at ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

ReuseTool—An extensible tool support for object-oriented framework reuse

Toacy C. Oliveiraa,b,∗, Paulo Alencarb, Don Cowanb

a PESC/COPPE Federal University of Rio de Janeiro, Brazil
b David Cheriton School of Computer Science, University of Waterloo, Canada

a r t i c l e i n f o

Article history:
Received 3 November 2010
Received in revised form 6 June 2011
Accepted 14 June 2011
Available online 21 June 2011

Keywords:
UML
Object-oriented framework
Software process
Software reuse

a b s t r a c t

Object-oriented frameworks have become a popular paradigm used to improve the software development
lifecycle. They promote reuse by providing a semi-complete architecture that can be extended through
an instantiation process to integrate the needs of the new software application. Instantiation processes
are typically enacted in an ad-hoc manner, which may lead to tedious and error-prone procedures. This
work leverages our previous work on the definition of RDL, a language to facilitate the description of
instantiation process, and describe the ReuseTool, which is an extensible tool to execute RDL programs
and assist framework reuse by manipulating UML Diagrams. The ReuseTool integrates a RDL Compiler
and a Workflow Engine to control most of the activities required to extend a framework design and,
therefore, incorporates application-specific needs. This work also describes how the tool can be extended
to incorporate new reuse activities and provides information of its use based on an exploratory Case Study.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

With the popularity of object-oriented languages such as Java
and C++, and the pressure for improving software development
productivity, the concept of object-oriented frameworks gained
momentum and became the de facto approach to develop complex
software systems. In essence, frameworks are reusable assets in
the form of quasi-complete and flexible software components, spe-
cially assembled to reduce the effort to develop new applications
within a specific domain (Bosch et al., 1999). An object-oriented
framework defines a set of permanent features known as frozen-
spots to deliver unchangeable functionality (Pree, 1995). It also
uses typical object-oriented techniques to incorporate flexible
features, the hot-spots (Pree, 1995), which must be extended
appropriately to integrate application-specific needs (Markiewicz
and Lucena, 2001) (Mattsson and Bosch, 2000). Examples of major
current object-oriented frameworks are: J2EE (J2EE, 2010), Dot-
NET (DotNet, 2010), Hibernate (Hibernate, 2010), JUnit (Junit,
2010), Eclipse (Eclipse, 2010), Struts (Struts, 2010) and MooTools
(MooTools, 2010).

In contrast to Software Product Lines (Atkinson et al.,
2001), where reuse occurs from putting together a set of
pre-defined software components, developers reusing object-

∗ Corresponding author at: PESC/COPPE Federal University of Rio de Janeiro,
Brazil. Tel.: +55 21 2562 8672.

E-mail addresses: toacy@cos.ufrj.br, toacy@csg.uwaterloo.ca (T.C. Oliveira),
palencar@csg.uwaterloo.ca (P. Alencar), dcowan@csg.uwaterloo.ca (D. Cowan).

oriented-frameworks need to engage in a more difficult reuse
procedure, which typically involves understanding the framework
design rationale and programming. For example, a developer must
be knowledgeable about the order in which hotspots are refined
since they may need to be refined in a specific implicit sequence.
Considering frameworks may contain several hotspots, such reuse
order should be clearly specified to avoid faulty reuse processes
(Fayad et al., 1999) (Kirk et al., 2005) (Hou et al., 2005). Moreover,
it is expected that the reuse processes of complex frameworks are
supported by tools to assist handling all the constraints that need
to be satisfied when reusing a framework.

In this work we describe the ReuseTool as a way to assist
object-oriented frameworks reuse. The tool rationale is to orches-
trate reuse actions within a reuse process that is specified by the
framework developer and executed interactively by the frame-
work reuser. The reuse process is specified using the RDL (Reuse
Description Language) (Oliveira et al., 2004, 2007, 2002), which is
a special language that allows the specification of process flows
such as sequencing, loops and branches, and also supports com-
mands to manipulate UML-based framework designs. As a result,
the ReuseTool is capable of tailoring the UML (2010) framework
design with new model elements that will represent the needs of
the application under development.

This work is organized as follows. In Section 2 we describe the
approach overview using a fictitious reuse project. In Section 3 we
describe the ReuseTool Architecture and the associated Software
Reuse Process. Section 4 illustrates the approach with a detailed
example and also brings information about our experience using
the ReuseTool. As RDL is a major component in our solution, Section

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.06.030

dx.doi.org/10.1016/j.jss.2011.06.030
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:toacy@cos.ufrj.br
mailto:toacy@csg.uwaterloo.ca
mailto:palencar@csg.uwaterloo.ca
mailto:dcowan@csg.uwaterloo.ca
dx.doi.org/10.1016/j.jss.2011.06.030

T.C. Oliveira et al. / The Journal of Systems and Software 84 (2011) 2234– 2252 2235

Fig. 1. ReuseTool operation.

5 describes how RDL was enhanced to cope with the tool needs.
Section 6 describes how the ReuseTool can be extended by exposing
the tool hotspots and the associated RDL program.

2. Approach overview

As pointed out by Krueger (Krueger, 1992), most reuse processes
involve four dimensions: Abstraction, Selection, Specialization and
Integration. The Abstraction and Selection dimensions deal with
the cognitive aspects of identifying a set of possible reusable assets
and selecting the most suitable to implement the requirements
associated with the new application. The cognitive nature of these
two dimensions relies on the fact that requirements are typically
expressed with natural language, which demands human inter-
pretation. The Specialization dimension appears once the reusable
artifact is chosen and needs to be tailored to incorporate the
application specific increments. Last but not least, the Integration
dimension deals with combining several reusable artifacts into a
single system.

In this scenario, the ReuseTool aims at facilitating the Specializa-
tion dimension with possible effects to Selection and Integration.
The Specialization dimension for object-oriented frameworks deals
with adding new design elements and code to the original frame-
work design, where each new element connects to a framework’s
hotspot. The connection between the new design element and the
hotspots extends the framework with information that is specific
to the application under development.

In order to orchestrate the framework specialization, the Reuse-
Tool takes an RDL Program and the Framework UML Model as
input and produces the Application UML Model. The Framework
UML Model represents framework’s classes and relationships and
also provides useful information on how the framework code can
be obtained. The RDL program details how the Framework UML
Model should be manipulated to accommodate new design ele-
ments related to the new application and the Application UML
Model is the final application design.

As illustrated in Fig. 1 the process of executing the ReuseTool
is quite straightforward. In Fig. 1-1 (Circle 1) the Framework UML
Model and the RDL Program are passed to the tool. The framework
model has classes Text and Style to indicate that the hypothetical
framework is capable of applying styles to a given text such as in a
word processor. The framework developers understand they can-
not provide all types of styles so, in this case, they have decided to
leave the style feature as a hotspot that must be configured by the
application developer.

Fig. 1-2 (Circle 2) shows how the framework developers have
exposed the Style hotspot and how to extend it. The rationale is

based on the fact that the framework design has the class Style
and this class is responsible for the style feature. As a result, the
specialization of hotspot Style requires the specialization of the Style
class, which is represented in the RDL Program by the statement
“CLASS EXTENSION (Style,myPack,?);”.

The CLASS EXTENSION command indicates the class Style must
be specialized with a new class that will represent the new style.
The question mark (?) passed as parameter is a RDL feature called
Reuser Interaction to indicate a placeholder for a name that should
be given at runtime (i.e. reuse-time) by the framework reuser. The
Reuser interaction is shown in Fig. 1-3 (Circle 3), where the reuser
indicates the new style will be called Header.

The result of the reuse process is an extended model called
the Application UML Model (Fig. 1-4), which contains the design
elements that represent application specific requirements. In our
example, the new model has the class Header as a sub-class for class
Style, satisfying the reuser requirements from Fig. 1-4 (Circle 4).

Besides orchestrating reuse actions along the Specialization
dimension, the ReuseTool can also impact the Selection and Inte-
gration dimensions. Selection can take into consideration the effort
needed to reuse a framework measured in terms of the complexity
to execute RDL programs. Frameworks with complex RDL programs
may be avoided as a higher complexity may indicate more reuse
effort is needed. The ReuseTool can also assist with Integration,
making it more straightforward since some integration actions can
be incorporated into the RDL language as a new type of reuse action.
Further impact on the Selection and Integration dimensions are still
under investigation.

3. Reuse tool

The ReuseTool aims at helping developers to follow a strict pro-
cess when working on the Specialization Dimension as discussed
in Section 2. By a strict process we mean a process that guides the
framework reuser to extend all the required hot-spots in a sequence
that is pre-defined by the framework engineer, thus following the
same rationale used in the framework implementation.

In order to create a process-based execution environment we
have established a set of requirements for the tool.

Adopt current trends. Besides the use of RDL, the tool should follow
current trends in the Information Technology scenario to avoid
a steep learning curve and allow further integration with other
approaches.
Handle object-oriented frameworks. The object-oriented program-
ming paradigm has been widely adopted, and has vast framework
examples we can leverage on. It also provides a potential market
for our approach.
Provide ways to pause and resume the process. Since a reuse process
can be lengthy, the ability put the process in a suspension mode
and resume with no loss of context is an important feature.
Provide infrastructure for a multi-“reuser” scenario. Nowadays
frameworks have to tackle multi-faceted scenarios, being typi-
cally complex and requiring different types of expertise during
customization. As a result, the framework reuse process became
multi-user by nature and our tool should provide means to support
it.
Extensibility. RDL provides the building blocks to represent
the reuse process and manipulate UML Models. However it’s
important to leave space for improvements, such as han-
dling forthcoming UML characteristics and new programming
paradigms such as Aspect-Oriented Programming. In this context,
the tool must be open for extension, and become itself a framework
that can be extended to handle other reusable assets.

Download	English	Version:

https://daneshyari.com/en/article/461185

Download	Persian	Version:

https://daneshyari.com/article/461185

Daneshyari.com

https://daneshyari.com/en/article/461185
https://daneshyari.com/article/461185
https://daneshyari.com/

