
The Journal of Systems and Software 84 (2011) 2253– 2264

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Checking enforcement of integrity constraints in database applications based on
code patterns

Hongyu Zhanga,b,∗, Hee Beng Kuan Tanc, Lu Zhangd, Xi Lina,b, Xiaoyin Wangd, Chun Zhangd, Hong Meid

a Key Laboratory for Information System Security (Tsinghua University), Ministry of Education, Beijing 100084, China
b Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
c Nanyang Technological University, Singapore 639798, Singapore
d Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 5 July 2010
Received in revised form 4 June 2011
Accepted 16 June 2011
Available online 5 July 2011

Keywords:
Integrity constraint enforcement
Code patterns
PHP
Static analysis
Code quality

a b s t r a c t

Integrity constraints (including key, referential and domain constraints) are unique features of database
applications. Integrity constraints are crucial for ensuring accuracy and consistency of data in a database.
It is important to perform integrity constraint enforcement (ICE) at the application level to reduce the
risk of database corruption. We have conducted an empirical analysis of open-source PHP database appli-
cations and found that ICE does not receive enough attention in real-world programming practice. We
propose an approach for automatic detection of ICE violations at the application level based on identifi-
cation of code patterns. We define four patterns that characterize the structures of code implementing
integrity constraint enforcement. Violations of these patterns indicate the missing of integrity constraint
enforcement. Our work contributes to quality improvement of database applications. Our work also
demonstrates that it is feasible to effectively identify bugs or problematic code by mining code patterns
in a specific domain/application area.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Database applications constitute one of the largest software
application domains. A database application is a data-intensive
software system that supports business processes or functions
through maintaining a database using a database manage-
ment system (DBMS). In database application development,
integrity constraints are used to ensure integrity of a database
(Ramakrishnan and Gehrke, 2000; Silberschatz et al., 2005). These
constraints include key constraints, referential constraints and
domain constraints. A key constraint specifies a key that uniquely
identifies a record in a database table. A referential constraint (also
called a foreign key constraint) ensures that two database tables
maintain a primary-key-to-foreign-key relationship. A domain
constraint defines the possible range of values of an attribute.
Breaking these constraints may lead to the loss of data dependen-
cies, runtime exceptions, security flaws or even corruption of the
database. Therefore, it is vital to enforce integrity constraints for
database applications.

There are two levels of integrity constraint enforcement (ICE):
the DBMS level and the application level. Traditionally, most DBMS
systems can only enforce a limited range of constraints. Referential

∗ Corresponding author. Tel.: +86 10 62773275.
E-mail address: hongyu@tsinghua.edu.cn (H. Zhang).

constraint enforcement is often not supported due to performance
concerns. In recent years, some DBMSs (such as MySQL+InnoDB)
can be configured to enable full support of ICE. However, even
though DBMSs support ICE, many developers fail to use it. Blaha
(2001) studied about 50 database applications and found that 90%
of them fail to use referential constraints.

The other level of ICE is at the application level, where ICE is
implemented by program code before performing any database
operation that may lead to a violation. At the application level, ICE is
maintained by programmers and independent of the DBMS choice.
Therefore, even if the DBMS does not support ICE, the data integrity
can still be kept. The risk of database corruption is thus reduced.
We believe that a good database application should be “defensive”
to prevent violations from happening. The lack of the application
level ICE in a database application often indicates bad program-
ming practice or even bugs. In this paper, we propose a pattern
based approach for checking enforcement of integrity constraints
at the application level.

In recent years, many approaches have been proposed to detect
bugs or problematic code based on code patterns (e.g., (FindBugs,
2011; Hovemeyer and Pugh, 2004; PMD, 2011)). We adopt a similar
approach, but focus on only the domain of database applications.
We find that in database applications, code that implements ICE
generally exhibits certain empirical patterns. We have identified
four such patterns, namely the key constraint enforcement pat-
tern, the referential constraint enforcement pattern for insertion

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.06.044

dx.doi.org/10.1016/j.jss.2011.06.044
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:hongyu@tsinghua.edu.cn
dx.doi.org/10.1016/j.jss.2011.06.044

2254 H. Zhang et al. / The Journal of Systems and Software 84 (2011) 2253– 2264

and update, the referential constraint enforcement pattern for dele-
tion, and the input validation pattern. By detecting violations of
these code patterns through static analysis, we can check whether
constraint enforcement has been performed in a database applica-
tion. We can then achieve a better understanding of the quality of
the database application and reduce the risk of database corrup-
tion. Even if ICE is implemented at the DBMS level, knowing the
absences of ICE at the application level could help software main-
tainers identify potential ICE problems during software evolution,
where the database schema or even the DBMS may change.

We have conducted experiments on nine real-world open
source PHP database applications. We find that, in reality, ICE does
not receive enough attention in programming practice. Implemen-
tations of ICE are often neglected at both the DBMS level and the
application level. We applied our code pattern based ICE detection
approach to these applications and discovered many violations of
integrity constraints with high accuracy.

We believe that our approach could help improve the quality of
database applications. The organization of the rest of this paper is as
follows. In Section 2, we introduce integrity constraint enforcement
together with an illustrative example. In Section 3, we describe
four ICE-related code patterns, which can be used to detect vio-
lations of ICE at the application level. We present our experiments
on nine PHP database applications in Section 4. Section 5 discusses
the related work and Section 6 concludes this paper.

2. Background

2.1. Integrity constraint enforcement (ICE)

A unique feature of database applications is the enforcement
of integrity constraints. Integrity constraints are conditions spec-
ified on a database schema (Ramakrishnan and Gehrke, 2000;
Silberschatz et al., 2005). They restrict the data that can be stored
in an instance of the database. Key constraints, referential con-
straints and domain constraints are three major forms of integrity
constraints.

A key constraint specifies a unique key (an attribute or a set of
attributes) that uniquely identifies each record in a database table.
A Primary Key (PK) is a unique key whose value cannot be null.
According to key constraints, no two distinct records in a table can
have the same value for the PK attribute.

A referential constraint (also called foreign key constraint) iden-
tifies an attribute (or a set of attributes) in one (referencing) table
that refers to an attribute (or a set of attributes) in another (refer-
enced) table. It establishes a relationship between the two tables.
For an attribute defined as a Foreign Key (FK), it should refer to a PK
in the referenced table. Thus, a row in the referencing table cannot
contain key values that do not exist in the referenced table.

In a database, a domain constraint is a basic form of integrity
constraint that defines the possible range of values of an attribute. It
includes rules for the allowed data type and length, the NULL value
acceptance, etc. All of these rules are used to ensure the validity
and consistency of data.

Integrity constraints should be enforced when the database is
to be modified. For key constraints, whenever a record containing
a PK value is to be inserted or updated, a check for key duplica-
tion is required. If the table already contains a record having the
same PK value, the key constraint is violated and the operation
should be rejected. To enforce referential constraints, whenever a
record containing a FK value is to be inserted or updated, we need
to check whether the referenced table contains the associated PK
value. Whenever a record containing a PK value is to be deleted,
a typical action is to delete any associated record containing a FK
with the same PK value.

Domain constraints contain domain-specific rules for preserv-
ing data validity. It is not easy to use one specific approach to check
all forms of the rules in a domain. However, since ultimately the
data to be stored in the database comes from the external envi-
ronment such as user input, we can implement input validation to
help ensure domain constraints. Input validation enforces that the
input submitted from the external environment must satisfy the
required domain constraints before it is accepted to the database.
Input validations are especially important for Web-based database
applications, where security vulnerabilities such as SQL injection
are real concerns.

ICE can be performed by a DBMS such as SQL Server 2005 or
MySQL+InnoDB. For example, the deletion of a PK record may cause
the deletion of the corresponding FK records. Changes to the data
that violates the constraints can be automatically rejected. How-
ever, if the constraints are not explicitly specified in the database
schema or the DBMS is not configured to enable automatic check-
ing of constraints, the integrity of the database would be in danger.
Empirical studies (Blaha, 2001, 2004) have shown that DBMS-level
ICE, especially the referential constraints, is seldom enforced in
real-world practice. Furthermore, many DBMSs (such as MySQL’s
default setting MySQL+MyISAM) do not fully support automatic
checking of ICE.

We believe that a good database application should be “defen-
sive” to prevent violations from happening. If the integrity
constraints are missing from the database schema or if the DBMS
is not configured properly to enable automatic enforcement of
integrity constraints, we need to rely on application-level ICE.
During long-term software evolution, the database schema, DBMS
configuration or even the type of DBMS could be changed by differ-
ent maintainers. Application-level ICE checking could help identify
possible ICE-related problems and warn the maintainers when such
changes occur. Furthermore, implementation of ICE at the applica-
tion level can help detect errors in user input earlier, and therefore
help provide better feedback to users and achieve better software
usability.

To check the absence of ICE at the DBMS level is relatively easy.
We just need to check whether the constraints are explicitly speci-
fied in the database schema and whether the DBMS is configured to
enable automatic checking of integrity constraints. However, man-
ually checking ICE at the application level is usually difficult, as the
code base to be examined could be large. In Section 3, we propose a
code pattern based approach for checking enforcement of integrity
constraints at the application level.

2.2. An illustrative example of ICE at the application level

We now give an example to illustrate the concepts of ICE at
the application level. Fig. 1 shows the conceptual model of a small
customer-order management system, which involves three enti-
ties: Customer, Order, and Item. In relational database design, the
attributes of the Customer table and their domain constraints are
as follows: custID (not null, int type), name (not null, varchar type),
address (not null, varchar type), and phone (not null, int type with
8 digits). Attribute custID is defined as the PK of table Customer,
orderID as the PK of table Order, and itemID as the PK of table Item.
As each order is associated with a customer, attribute custID in table
Order is defined as a FK. Similarly, orderID in table Item is also a
FK.

To enforce database integrity, a program needs to check whether
the constraints are broken before performing any database oper-
ation. As an example, the PHP code in Fig. 2 implements input
validation and key constraint enforcement. The code from line 6
to line 10 uses if structures to implement input validation, which
checks the values of user input before they are accepted to the
database. In line 18, a record with key value $custID is inserted

Download English Version:

https://daneshyari.com/en/article/461186

Download Persian Version:

https://daneshyari.com/article/461186

Daneshyari.com

https://daneshyari.com/en/article/461186
https://daneshyari.com/article/461186
https://daneshyari.com

