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In this paper we consider the set of equations describing Oldroyd-B
fluids in exterior domains. It is shown that these equations admit
a unique, global solution defined in a certain function space
provided the initial data and the coupling constant are small
enough.
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1. Introduction and main result

Incompressible fluids are being described by the set of equations{
�
(
ut + (u · ∇)u

) = divσ + f ,

div u = 0,
(1.1)
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where u denotes the velocity of the fluid, σ its stress tensor, � its density and f an outer force. The
stress tensor σ may be decomposed as σ = −pId + τ , where p denotes the pressure of the fluid and
τ the tangential part of the stress tensor.

In case of Newtonian fluids one has

τ = 2ηD(u),

where η denotes the viscosity of the fluid and D(u) = 1
2 (∇u + (∇u)T ) the deformation tensor.

For many type of fluids it is impossible to describe the tangential part τ (t) of the stress tensor σ(t)
at time t knowing only D(u(t)). One has hence to take into account in addition the history of D(u).
In this case, one says that the fluid has a “memory” and is of viscoelastic type. The Oldroyd model,
see [17], is one of the classical models of viscoelastic fluids and here τ is being described by the
differential equation

τt + (u · ∇)τ + bτ + F (τ ,∇τ ) = 0,

where b > 0 and F is a quadratic form in (τ ,∇u).
In this paper, we do not consider the general Oldroyd model with eight constants but the simpler

case of so-called Oldroyd-B fluids. Here τ is being determined by the equation

τ + λ1
Daτ

Dt
= 2η

[
D(u) + λ2

Da D(u)

Dt

]
, (1.2)

where Da
Dt denotes the “objective derivative” given by

Daτ

Dt
= τt + (v · ∇)τ + ga(τ ,∇u)

and ga is given by

ga(τ ,∇u) = τ W (u) − W (u)τ − a
[

D(u)τ + τ D(u)
]

for some a ∈ [−1,1]. Here W (u) = 1
2 (∇u − (∇u)T ) denotes the vorticity tensor; the parameters

λ1, λ2 � 0 denote the relaxation and retardation time, respectively, and satisfy λ2 � λ1. Fluids of
this type have viscous as well as elastic properties. Note that the case λ2 = λ1 = 0 corresponds to
purely viscous fluids (being described by the Navier–Stokes equation), whereas the case λ1 > λ2 = 0
describes a purely elastic fluid.

Setting τ = τN + τE with

τN = 2η
λ2

λ1
D(u),

it follows that τE satisfies

τE + λ1
DaτE

Dt
= 2η

(
1 − λ2

λ1

)
D(u).

Setting with some abuse of notation τ = τE , the above set of Eqs. (1.1) and (1.2) may be rewritten in
the form ⎧⎪⎨⎪⎩

�
(
ut + (u · ∇)u

) − η(1 − α)�u + ∇p = divτ + f ,

div u = 0,

τ + λ1
(
τt + (u · ∇)τ + ga(τ ,∇u)

) = 2ηαD(u),

(1.3)

where α = 1 − λ2/λ1.
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