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Abstract

The author discusses the degenerate and quasilinear parabolic system

ut = uαvβ�u + aupvq and vt = uθvη�v + burvs,

with Dirichlet boundary conditions in a bounded domain Ω and shows that the global existence depends
crucially on the sign of the difference (q − β)(r − θ) − (α + 1 − p)(η + 1 − s) and the domain Ω .
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider positive solutions of the following degenerate and quasilinear parabolic system:

⎧⎪⎪⎨
⎪⎪⎩

ut = uαvβ�u + aupvq,

vt = uθvη�v + burvs, t > 0, x ∈ Ω,

u(x,0) = φ1(x), v(x,0) = φ2(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, t > 0, x ∈ ∂Ω,

(1.1)

where α, β , p, q , θ , η, r , s, a and b are nonnegative and Ω ⊂ Rn is a bounded domain with
smooth boundary ∂Ω . Problem (1.1) describes the processes of heat diffusion and combus-
tion in two-component continua with complicated heat conductance and volume energy release
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(see [12]). In recent years, many important results have been reported on global and blowup
solutions for degenerate parabolic systems. Some of those results are stated below.

Wang [14] discussed the system

ut = up(�u + av) and vt = vq(�v + bu), (1.2)

and proved that all solutions exist globally if and only if ab � λ2
1, where λ1 is the first eigen-

value of −� in Ω with Dirichlet data. Deng, Li and Xie [7] used more general functions f1(u)

and f2(v) to replace up and vq , respectively, and obtained the same results. Li and Xie [11]
investigated a system of n equations

ult = clu
αl

l

(
�ul +

n∏
j=1

u
plj

j

)
, l = 1,2, . . . , n,

and obtained very interesting results. Later, Deng [6] dealt with a general system

ut = �um + uαvp and vt = �vn + uqvβ, (1.3)

and showed that if m > α,n > β and pq < (m − α)(n − β) every nonnegative solution is global,
whereas if m < α or n < β or pq > (m − α)(n − β) both global and blowup solutions exist. In
critical case pq = (m−α)(n−β), there exists λ∗ � 1 such that all solutions are global if λ1 > λ∗
and all solutions blow up in finite time if λ1 < 1/λ∗. Mu et al. [12] considered the same prob-
lems and obtained similar results. Chen [3] considered the system (1.2) with lower order terms
f (u, v,Du) and g(u, v,Dv) and showed that all solutions are bounded if (1 + c1)

√
ab < λ1 and

blow up in a finite time if (1 + c1)
√

ab > λ1, where c1 > −1 related to f and g. Chen [2] and
Chen and Yu [4] also discussed single equations with lower order terms. Li et al. [9] investigated
the following strong coupled system

ut = vp(�u + au) and vt = uq(�v + bv), (1.4)

and proved that all solutions are global iff λ1 � min{a, b}. Other interesting results can be found
in [5,10] and [13].

In this paper, we use a new method to obtain lower and upper bounds for the solutions of the
regularized equations to (1.1). In this method, we estimate the integral of a ratio of one solution to
the other. This method shows successful in proving existence and blowup problems (see [1–4]).
Then we use the method introduced by Li et al. [9] to obtain a classical solution to (1.1).

This paper is organized as follows: In Section 2, we list some preliminary results and obtain
the global existence for any smooth initial values when (q −β)(r − θ) < (α + 1 −p)(η + 1 − s)

plus other conditions on the indices. In Section 3, we show that the global solutions do not exist
for some large initial values when (q −β)(r − θ) > (α + 1 −p)(η + 1 − s) plus other conditions
on the indices. In critical case (q − β)(r − θ) = (α + 1 − p)(η + 1 − s), the size of the domain
determines the existence of global solutions. In particular, if q − β = α + 1 − p and r − θ =
η+1− s, then the solutions are global for all initial values when λ1 > λ∗ and the global solutions
do not exist for some large initial values when λ1 < λ∗, where λ∗ = a(b/a)(q−β)/(η+1−s+q−β).
We also discuss some degenerate cases. The results in this paper generalize those in [6,12,14]
and [9].
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