
Microprocessors and Microsystems 45 (2016) 115–128

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Design and implementation of instruction indirection for emb e dde d

software obfuscation

Naoki Fujieda

∗, Tasuku Tanaka , Shuichi Ichikawa

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempakucho, Toyohashi, Aichi,

441-8580, Japan

a r t i c l e i n f o

Article history:

Received 24 July 2015

Revised 7 January 2016

Accepted 14 April 2016

Available online 21 April 2016

Keywords:

Embedded system

Secure processor

Software protection

Instruction fetch

Instruction register file

a b s t r a c t

Instruction Register File (IRF) was originally proposed to reduce the power consumption of a micropro-

cessor by providing the indirect access to frequently executed instructions. The IRF is also an attractive

and cost-effective unit to protect embedded software from analysis, plagiarism, and falsification. For this

purpose, the correspondences between IRF entries and their original instructions must be concealed. This

means the instructions in the IRF should be carefully selected both to have more instructions be executed

through the IRF and to flatten the distribution of the indices of the IRF.

This paper presents two heuristic algorithms, precision-oriented and time-oriented, to find sub-optimal

assignments to the IRF. According to the evaluation results, the precision-oriented algorithm obtained the

same as or very close to the optimal assignment of an IRF with 48 or less entries. The time-oriented al-

gorithm found a sub-optimal assignment of a 1024-entry IRF in 16 ms, whose precision was 0.5% inferior

to the precision-oriented solution at a maximum. The hardware cost of a 1024-entry IRF on an FPGA was

modest: two 18 kib block RAM elements and 0.8% increase of the logic elements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To protect intellectual property, the defense of software against

analysis, plagiarism, and falsification has become an important is-

sue. For embedded systems, it should be attained with a min-

imal overhead because of their strict limitations on resource or

performance.

Reverse engineering consists of three steps: acquisition of ma-

chine code, disassembly and decompilation. Disassembly is a con-

version of machine language into assembly language, while decom-

pilation is a translation of an assembly into a human-readable code

of high level language. Tamper resistance of software is obtained

by obstructing at least either of them. Specifically, there are the

following three major ways to protect software:

• encryption of the machine codes to make them meaningless

without a hidden key [1,2] ,
• obstruction of disassembly by confusing disassemblers or pre-

venting them from accessing necessary information about the

instructions [3–10] , and

∗ Corresponding author.

E-mail addresses: fujieda@ee.tut.ac.jp (N. Fujieda), ichikawa@ieee.org

(S. Ichikawa).

• obstruction of decompilation by scrambling the structure of the

program [11,12]

Instruction set randomization (ISR) [3–8] is an approach to pro-

tect software by obstructing disassembly, where each processor (or

group of processors) has a different instruction set. Software is

protected from analysis or plagiarism by different or additional in-

struction coding system that is hidden from attackers. Moreover,

diversified instruction sets are naturally resistant to falsification

because a malicious instruction sequence for one processor (or one

group of processors) does not operate correctly on the others.

The use of an Instruction Register File (IRF) [13,14] is one of the

attractive candidates of instruction set randomization. The IRF is

a small memory that stores the most common expressions of in-

structions specified by the compiler. It is referred by an index in

fetched instructions. Though it initially aimed at reducing power

consumption by packing multiple instructions into a single one

[13] , it also has resistance to tampering [15] . It is based on the

fact that a reference to the IRF is considered as another expression

of the instruction, which is incomprehensible as long as the con-

tents of the IRF are hidden. However, the contents may be guessed

from the occurrence frequency of indices. Some routines may not

be obfuscated enough by the lack of references to the IRF. Such

risks was not evaluated in [15] , although the code reduction and

the execution time with the IRF were measured as its side effects .

http://dx.doi.org/10.1016/j.micpro.2016.04.005

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.04.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.04.005&domain=pdf
mailto:fujieda@ee.tut.ac.jp
mailto:ichikawa@ieee.org
http://dx.doi.org/10.1016/j.micpro.2016.04.005

116 N. Fujieda et al. / Microprocessors and Microsystems 45 (2016) 115–128

This paper examines the effectiveness of the IRF against tam-

pering, particularly reverse engineering. It is suitable for embed-

ded systems, such as manufacturing machinery, because of its

small overhead on resource and performance. Without protec-

tion, valuable know-how and trade secrets that their software

contains might be easily uncovered and stolen. Moreover, once

their software are analyzed, injection of malicious code by abus-

ing buggy program or unauthorized modification of software might

be also possible. When the IRF-based ISR is applied to, most of

the program code is expressed by indices of the IRF, which are

not understandable without the IRF contents. It can also pre-

vent malfunctions of systems or serious accidents due to falsified

software.

The main topic of this paper is proper selection of the contents

of the IRF, including the quantification of the efficiency of instruc-

tion hiding, proposal of selection algorithms, and their evaluation.

This paper also includes an implementation of a large IRF on an

FPGA to show that its hardware cost is comparable to other ISR

approaches.

The rest of this paper is organized as follows: Section 2 pro-

vides overviews of the related studies and prerequisites for the IRF

on utilizing it for tamper resistance. In Section 3 , we introduce

a scale of tamper resistance for the IRF contents considering fre-

quency analysis and show its characteristics. In Section 4 , we pro-

pose a branch-and-bound algorithm to find the optimal assignment

and evaluate it. Section 5 describes heuristic algorithms to find a

sub-optimal assignment and their evaluation with two instruction

sets. Section 6 presents and evaluates an FPGA implementation of

the IRF. In Section 7 , we make some discussions about possible at-

tacks to our method. Finally, we conclude the paper in Section 8 .

2. Background

2.1. Protection against reverse engineering and instruction set

randomization

Encryption of instruction memory is one of the most typical

anti-tamper approaches for processors, which was used in the Exe-

cute Only Memory (XOM) [1] and the AEGIS architecture [2] . Most

of the methods adopt modern ciphers such as AES to decrypt in-

struction memory that was encrypted at compile time. Even data

memory is often encrypted and decrypted on the fly. This approach

is useful for applications where security is the most important con-

cern. Nevertheless, it significantly increases the memory access la-

tency and the hardware resources, and thus it is unsuitable for

cost-sensitive embedded systems.

Protection of software is also achieved by obstructing at least

either of disassembly or decompilation. As an obstruction of dis-

assemblers, Linn and Debray [9] proposed a method to disor-

der disassemblers to generate erroneous assembly codes in IA-

32 by inserting junk bytes that obscure the partitions of instruc-

tions. Monden et al. [10] proposed a finite state machine-based

approach where the interpretation of an opcode varied with the

value of the internal state machine. Obfuscation methods against

decompilers were structured by Collberg et al. [11] . In particular,

control flow obfuscation disturbs the reconstruction of the con-

trol flow of the original program. It is based on opaque pred-

icates, or conditional codes whose outcomes are actually con-

stant but not easily deduced, followed by unreachable bogus

codes [11,12] .

Instruction set randomization (ISR) may be categorized into ob-

struction of disassembly, and also be considered as lightweight in-

struction memory encryption. Compared to robust but costly mod-

ern ciphers, most of them are based on simple substitution ciphers

for lower overhead. Both hardware [5,7,8] and software [3,4,6] im-

plementations have been studied. Some methods utilize the

Fig. 1. The Instruction Register File [13] retrieves frequently executed instructions

from indices in specialized instructions.

characteristics of the target instruction set [5] . Some other meth-

ods rely on stream ciphers [4,8] , whose characteristics are closer to

those of memory encryption: higher safety but higher cost.

An important measure of ISR is the hardness to guess the orig-

inal instructions from the randomized ones with frequency analy-

sis [16] . Some kinds of instructions might be easily guessed from

statistical properties of the obfuscated binary (e.g. the frequencies

of opcode values). The analysis might be even easier if heuristics

are applied. For example, the reserved fields of specific instruc-

tions are always set to zero. To prevent frequency analysis, it is

important for ISR to decrease statistical information of the original

instructions.

2.2. Instruction register file

Instruction Register File (IRF) [13] is a table of frequently used

instructions. Fig. 1 illustrates the IRF. It assumes a 32-bit RISC ISA

such as MIPS and ARM. It is placed just before instruction decoder

and accessed by indices. If a specialized instruction is fetched, the

corresponding instruction(s) to the index (indices) will be read

from the IRF and sent to the decoder. In this paper, we refer to

instructions that reside in the IRF as IRF instructions.

The IRF has originally been proposed to compress instruction

sequences. Since the bit length of an index of the IRF is much

shorter than that of an original instruction, multiple IRF instruc-

tions can be extracted from a specialized one. In the original pro-

posal [13] , both normal and specialized instructions were 32 bits

long. Seven bits of specialized instructions were used for identifi-

cation and the remaining 25 bits were for indices. Since the num-

ber of the IRF was set to 32, each index required log 2 32 = 5 bits.

Therefore, a specialized instruction contained up to five (= 25 / 5)

continuous instructions listed in the IRF.

2.3. Using IRF for anti-tampering

In addition to the reduction of code length, the IRF can provide

randomization of a subset of the instructions [15] . It is possible

to protect software from analysis by arbitrarily shuffling the map-

ping from indices to IRF instructions. It provides a protection from

plagiarism if the mapping and the corresponding instruction se-

quence are diversified for each system. It makes the system robust

over falsification by prohibiting IRF instructions from being exe-

cuted directly from instruction memory. In comparison with other

ISR methods, the IRF has an advantage of hiding information about

operands.

Download English Version:

https://daneshyari.com/en/article/461209

Download Persian Version:

https://daneshyari.com/article/461209

Daneshyari.com

https://daneshyari.com/en/article/461209
https://daneshyari.com/article/461209
https://daneshyari.com

