
Microprocessors and Microsystems 45 (2016) 141–150 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Configurable network-on-chip router macrocells 

Sergio Saponara 

∗, Luca Fanucci 

Department of Information Engineering, University of Pisa, Pisa, Italy 

a r t i c l e i n f o 

Article history: 

Received 23 October 2015 

Revised 19 March 2016 

Accepted 22 April 2016 

Available online 29 April 2016 

Keywords: 

Network-on-chip (NoC) 

Multi-processor system-on-chip (MPSoC) 

Router 

Configurable core 

Design methodology 

a b s t r a c t 

This paper presents a configurable architecture for Network-on-Chip (NoC) router macrocells, and a 

methodology to streamline their design and configuration. The methodology addresses the typical prob- 

lems experienced by design and verification engineers when coding highly configurable intellectual prop- 

erty macrocells at Register Transfer Level (RTL) with hundreds of parameters and thousands of resulting 

configurations. A NoC infrastructure for a Multi Processor System-on-Chip (MPSoC) may require tens or 

hundreds of router macrocells. Therefore, managing the configuration design space is becoming a bottle- 

neck for the design and verification of many-core processing systems. The proposed generation flow is 

illustrated on a real-world NoC router core. Its configurable architecture is compliant with several NoC 

topologies such as Ring, Octagon, Spidergon and 2D mesh typically used in many-core processing plat- 

forms. The generation flow allows for a reduction in the database code size, up to 70% in our experiments, 

and a contraction of three orders of magnitudes of the verification space vs. conventional design flows 

of RTL macrocells. The validity of the approach is also confirmed by synthesizing the generated router 

macrocells in nanoscale CMOS technology. The achieved performance compare well to the state-of-the- 

art in terms of low latency and low circuit complexity. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A key element in the design of MPSoC is the global on-chip 

communication infrastructure, because its throughput, latency and 

power consumption set the limit to the overall performance of 

the computing platform. The traditional shared bus approach ex- 

hibits its limits as the number of integrated Intellectual Property 

(IP) cores increases. While gate delay scales with each new tech- 

nology node, global wire delay increases and can be kept constant 

only by inserting repeaters [1,2] . For this reason shared bus com- 

munications standards are being substituted by multi-layer inter- 

connects, now commonly referred as NoC, when designing many 

core systems. The NoC paradigm leverages the networking and par- 

allel computing domain experience into the SoC world. It imple- 

ments packet-switched micro-networks with a TCP/IP-like protocol 

stack. Examples of NoC, proposed by industry or academia, include 

Spidergon STNoC [2–5] , Mango [6] , Aethereal [7] , Arteris [8] , Sonics 

[9] , SoCbus [10] and xPipes [11–13] . Fig. 1 illustrates the building 

blocks of a NoC and the corresponding layers in the TCP/IP pro- 

tocol stack. The Network Interface (NI) connects the IP cores (e.g. 

processors, memories, DSP engines, ...) to the NoC domain. The NI, 

whose design has been detailed by the authors in [2] , is made 

up of two separate components: shell and kernel. The shell en- 

∗ Corresponding author: Fax + 39 050 2217 522. 

E-mail address: sergio.saponara@iet.unipi.it (S. Saponara). 

capsulates the transport layer and transforms local core transac- 

tions into NoC packets. The kernel implements the network layer 

and provides features such as data bus size and frequency con- 

version between the core and the NoC domain. Splitting trans- 

port and network layers into separate sub-components simplifies 

plug & play design style. The network is composed of a num- 

ber of routers that pass packets between nodes. The router imple- 

ments network and data-link layers. The physical link is respon- 

sible for actual signal propagation among routers and/or network 

interfaces. One of the major challenges when designing a commu- 

nication platform is to minimize the design effort while attempt- 

ing to cover the widest application space in terms of traffic re- 

quirements (high and/or guaranteed bandwidth, low latency, etc.) 

and implementation requirements (area, clocking scheme, power 

consumption) [14] . A number of algorithms [15–18] support high- 

level decisions like network topology, routing schemes, partition- 

ing of clock domains. However, the actual implementation would 

not be feasible without NoC building blocks (router, NI, link) that 

provide the configurability necessary to match these high-level re- 

quirements. Particularly, the router building block is the core of the 

NoC communication infrastructure. 

The goal of this paper is to introduce a novel configurable 

router architecture, particularly suited for low latency and low 

circuit complexity, and a methodology, named metacoding , which 

supports the design of the configurable components by providing 

a proper abstraction of the coding process. 

http://dx.doi.org/10.1016/j.micpro.2016.04.008 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.04.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.04.008&domain=pdf
mailto:sergio.saponara@iet.unipi.it
http://dx.doi.org/10.1016/j.micpro.2016.04.008


142 S. Saponara, L. Fanucci / Microprocessors and Microsystems 45 (2016) 141–150 

Fig. 1. Typical TCP-IP layers for Internet applications and their mapping onto NoC 

components. 

Metacoding overcomes the limit of current Hardware Descrip- 

tion Languages (HDLs) in capturing configuration intents and re- 

flecting them into an optimized and easy to use RTL code database, 

which satisfies the following requisites: 

- Coded consistently : unnecessary code is never generated, the 

internal components are the smallest required to provide a 

given functionality, unconnected signals and ports are removed, 

unused control signals are driven with proper values. 

- Neutral to tools: the code database is read as-is by any stan- 

dard front-end toolchain (LINT checking, functional simulation, 

RTL synthesis). 

- Verification friendly : high code-/functional-coverage scores are 

achieved with a reasonable number of configurations. 

The generated code through metacoding is a macrocell, i.e. a 

RTL HDL description that can be simulated and synthetized in any 

standard-cells library, or FPGA technology, with conventional Elec- 

tronic Design Automation (EDA) tools used in digital IC design 

from vendors such as Synopsys, Cadence, Mentor (or custom FPGA- 

vendor tools for the FPGA flow). Once generated and verified the 

gate-level netlist, a conventional flow up to GDS-II data base final- 

ization can be done. In this work, the generated code is in VHDL, 

but other languages for hardware description and synthesis, such 

as Verilog, can be used too. 

Differently from other works in literature, that present top-to- 

bottom system level design flows [19–22] , the approach proposed 

in this paper raises the level of abstraction of the design descrip- 

tion, not of the design itself: the input of the flow is not a high- 

level specification, but RTL code templates and a set of properly 

defined rules to assemble them. The rationale of this choice is to 

streamline the generation of those design aspects that are repeat- 

able, structured and prone to errors, while retaining the full advan- 

tages of manually coding RTL blocks, like the ability of achieving 

timing closure with extremely tight constraints. Using the termi- 

nology of the new IP-XACT standard [23,24] , i.e. the XML format 

used to package reusable IP cores, the subject of this work should 

be referred to as a ‘code generator’, i.e. a software plug-in that cus- 

tomizes the core during the configuration activity. 

Hereafter, Section 2 presents a novel architecture of a router, 

patented in [25,26] . The router architecture template can be con- 

figured to connect a sender or receiver IP core (e.g. processor, 

on-chip memory or controller for off-chip DRAM), through an NI, 

and up to other 4 neighbouring routers. This way it supports sev- 

eral network topologies typically used in MPSoC such as Ring, Oc- 

tagon, Spidergon and 2D mesh. Section 3 analyzes the router con- 

figuration space and points out which classical RTL coding tech- 

nique would be used to implement each feature. Section 4 presents 

metarouter , the object-oriented model that applies the metacoding 

principle to the new router architecture. Section 5 provides synthe- 

sis results of the generated macrocells in nanoscale CMOS technol- 

ogy. Section 6 compares the achieved performances vs. the state- 

of-the-art. Section 7 draws some conclusions. 

2. Router features and architecture 

All router features are configurable at synthesis time, from sup- 

ported topologies to routing strategies, arbitration policies and 

clocking schemes. 

2.1. Topology and routing Strategy 

The router can support several topologies [2–4,24,27–30] such 

as Ring, Octagon, Spidergon, 2D mesh plus a family of customized 

topologies that can be derived from them. Each topology has some 

advantages and disadvantages, briefly reviewed hereafter. In a ring 

architecture, all nodes are connected in a ring fashion and each 

node has two neighbours independently from the size of the MP- 

SoC. All routers in a ring topology have the same number of links, 

just 3: one link to the NI (connecting the sender/receiver memory 

or processor to the NoC) and two links, typically named Left (L) 

and Right (R) or West (W) and East (E). The strengths of the Ring 

topology are: its small degree, the low-complexity of the router, 

faults can be easily detected and located. Its simplicity is paid in 

terms of a large ring diameter for MPSoC with a large number of 

cores. Moreover, a single fault in a link can disrupt the entire net- 

work and a high latency value is payed for the communication be- 

tween two nodes at the opposite side of the NoC. Hence, Ring is 

suited for simple MPSoC platforms with few cores. 

A basic Octagon NoC consists of 8 nodes and 12 bidirec- 

tional links. Each router has 4 links: one associated with the 

sender/receiver IP and 3 with neighbouring switches in Left (L), 

Right (R) and Across direction, which is new vs. the basic Ring 

topology. Thanks to the Across link an Octagon NoC features a low 

latency for the communication between two nodes at the opposite 

side of the NoC. The Octagon topology is characterized by a simple 

routing strategy: the idea is to move clockwise or counter clock- 

wise along the ring to reach destination nodes which are near the 

source node, and to use the Across link as first or last hop to jump 

to a part of the network that is far away from the source node. 

Spidergon topology extends the capability of Octagon beyond the 

limit of 8 nodes, and presents the possibility of a router with a 

5th link called Hierarchy (H). The Hierarchy link, see Fig. 2 , can 

be used to connect a Spidergon NoC to another NoC domain thus 

creating a hierarchy in the network where the router acts as a 

gateway between the two NoC sub-networks. One limit of Spider- 

gon in complex MPSoC is that the links in Across direction can be 

much longer than the other links. The insertion of repeaters may 

be needed, but this leads to an asymmetrical behaviour between 

the Across link and the other links. 

In a 2D mesh the nodes are connected as a grid. Architec- 

ture expansion is easy for meshes and low effort is needed when 

adding more IP cores to the existing architecture. The presence of 

multiple paths between a pair of nodes makes a mesh NoC tolerant 

to link failure. However, in a 2D mesh NoC the nodes have differ- 

ent degrees according to their locations within the mesh. Corner 

nodes have degree of 2. Edge nodes have degree of 3. Inner nodes 

have degree of 4. Different routers are required in a 2D mesh NoC, 

since the number of links can be from 3 to 5: one to connect the 

sender/receiver IP core through the NI, and the others called North 

(N), South (S), East (E) and West (W) to the neighbouring routers. 



Download English Version:

https://daneshyari.com/en/article/461211

Download Persian Version:

https://daneshyari.com/article/461211

Daneshyari.com

https://daneshyari.com/en/article/461211
https://daneshyari.com/article/461211
https://daneshyari.com

