
Microprocessors and Microsystems 45 (2016) 164–175

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Low power fixe d priority sche duling sporadic task with share d

resources in hard real time systems

Yi-wen Zhang

a , ∗, Chu-gui Xu

b

a College of Computer Science and Technology, Huaqiao University, XiaMen, China, 361021
b School of Information Engineering, Sanming University, Sanming, China 365004

a r t i c l e i n f o

Article history:

Received 21 January 2016

Accepted 29 April 2016

Available online 3 May 2016

Keywords:

Sporadic task

Resource-sharing

Energy management

Fixed priority scheme

a b s t r a c t

Dynamic voltage scaling (DVS) and dynamic power management (DPM) are two effective techniques in a

real time system. In this paper, we address the problem of the canonical sporadic task scheduling based

on a fixed-priority scheduling scheme and take a generalized power model into account. The sporadic

tasks share a set serially reusable, single-unit resources. First, we present a rate monotonic with dual

priority scheduling policy, called RM/DPP, to solve the sporadic tasks shared resources scheduling prob-

lem and discuss the feasibility of the RM/DPP algorithm. Second, a static fixed-priority sporadic tasks

scheduling algorithm with shared resources, called SFPSASR, has been put forward, which considers the

off-chip workload and assumes that each task executes with its worst case execution time. Third, for en-

ergy efficiency, a dynamic fixed-priority sporadic tasks scheduling algorithm with shared resources, called

DFPSASR, has been put forward, which considers the speed transition overhead and combines the DVS

and the DPM technology. The experimental results show that the proposed SFPSASR algorithm can reduce

the energy consumption by 42.14% ∼51.73% over the RM/DPP algorithm and the DFPSASR algorithm can

reduce the energy consumption by 79.37% ∼82.94% over the SFPSASR algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Low energy consumption has become one of the major goals in

an embedded real time system design. This is especially important

for battery-operated systems, such as mobile phones and portable

medical devices. The reason for this is that the low energy con-

sumption can extend the lifetime of the battery and decrease the

heat dissipation of the devices. The major energy consumption of

the processor comes from the dynamic power due to switching ac-

tivity and the static power consumption due to the leakage current

[1] . Dynamic power management (DPM) [2] and dynamic voltage

scaling (DVS) [3–10] have been widely used to reduce the energy

consumption. DPM switches the processor to a sleep mode or turns

off the system component that is not currently in using. DVS aims

to reduce the dynamic power by scaling down the processor fre-

quency when the processor is not fully loaded.

Existing studies on a real-time system for energy management

focus on the periodic task model or the mixed task model [3–9] . In

this paper, we investigate the canonical sporadic tasks that share a

set serially reusable, single-unit resources and take a generalized

power model into account. The resource is a software object, for

∗ Corresponding author.

E-mail address: zyw@hqu.edu.cn (Y.-w. Zhang).

example, a data structure. The tasks share this resource that must

be accessed in a mutually exclusive manner. The main contribution

of this paper can be summarized as follows:

(1) A new rate monotonic with dual priority scheduling pol-

icy, called, RM/DPP, is put forward. The RM/DPP algorithm

which borrows some ideas about preemption threshold from

[11,12] is based on rate-monotonic (RM) scheduling policy

and it can ensure that the resource can be accessed in a mu-

tually exclusive manner. In addition, we discuss the feasibil-

ity of the RM/DPP algorithm.

(2) We present a static fixed-priority sporadic tasks scheduling

algorithm with shared resources, called SFPSASR, which con-

siders the off-chip workload and assumes that each task ex-

ecutes with its worst case execution time. The SFPSASR algo-

rithm combines the static sporadic tasks low power schedul-

ing algorithm (SSTLPSA) presented in [13] with the RM/DPP

algorithm. In addition, we discuss the feasibility of the SFP-

SASR algorithm.

(3) We present a dynamic fixed-priority sporadic tasks schedul-

ing algorithm with shared resources, called DFPSASR, which

considers the speed transition overhead and combines the

DVS and the DPM technology. In addition, the DFPSASR algo-

rithm can reclaim the slack time from the early completion

task.

http://dx.doi.org/10.1016/j.micpro.2016.04.010

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.04.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.04.010&domain=pdf
mailto:zyw@hqu.edu.cn
http://dx.doi.org/10.1016/j.micpro.2016.04.010

Y.-w. Zhang, C.-g. Xu / Microprocessors and Microsystems 45 (2016) 164–175 165

The remainder of the paper is organized as follows. Section

2 reviews the literature about the lower power scheduling al-

gorithm. The preliminaries are introduced in Section 3 . Section

4 presents a new rate monotonic with dual priority scheduling

policy, called, RM/DPP. Section 5 presents a static scheduling al-

gorithm, called SFPSASR. We present a dynamic algorithm, called

DFPSASR, in Section 6 . The simulation experiments are presented

in Section 7 and Section 8 concludes our work.

2. Related work

Many researchers have explored DVS in real-time systems [3–

9] . The above researches focus on the periodic task model or

mixed task model. First, we focus on algorithms which consider

the canonical sporadic task model. The works focus on the spo-

radic task model presented in [13–16] . Qadi et al. [14] have pro-

posed a DVS algorithm, called DVSST, which is based on the ear-

liest deadline first (EDF) scheduling policy and only considers the

dynamic power. Zhong and Xu [15] have proposed an algorithm,

called TV-DVS, which is more energy efficient than that of the

DVSST algorithm [14] , but the task will not meet the deadline con-

straints. Zhang and Guo [16] have proposed a more efficient algo-

rithm, called DSTSA, which considers a generalized power model

and reclaims the dynamic slack to reduce the energy consumption

while all tasks will meet their deadlines. In addition, Zhang and

Guo [13] have used a RM scheme to solve the canonical sporadic

task low power scheduling problem and proposed a DVS algorithm,

called DSTLPSA, which takes a generalized power model into ac-

count and combines DVS with DPM.

Note that all of above researches assume that each task is inde-

pendent, i.e. the task doesn’t share resources. The resource shared

problem in real time system has been studied in [11,17–19] . Sha

et al. [17] have proposed two protocols, i.e. the basic priority in-

heritance protocol (PIP) and the priority ceiling protocol (PCP), to

solve the shared resource problem which results in a priority inver-

sion problem. Baker [18] has extended the PCP policy to dynamic

priority schemes and proposed the stack resource policy (SRP). In

addition, Jeffay [19] has proposed a new scheduling policy, called

EDF/DDM, which fits to the dynamic priority scheduling algorithm.

Moreover, Saksena and Wang [11] have proposed a more flexible

scheme, called preemption threshold, to solve a priority inversion

problem. We use the basic idea of preemption threshold in this

paper.

Although, the above works focus on the shared resource prob-

lem, these works don’t take the energy consumption into consider-

ation. The following works have taken the shared resource problem

and the energy consumption into consideration [20–23] . The algo-

rithms presented in [20] and in [22] have focused on the periodic

task model. Although, The algorithm presented in [21] has focused

on the sporadic task model. It only takes the dynamic power into

account and ignores the static power. Moreover, it assumes that

the execution time of a task scales linearly with the processing

speed and that each task executes with its worst case execution

time. The algorithm presented in [23] is the most closely related

to our work. But it is based on the EDF scheduling policy.

The algorithm presented in [15] considers the sporadic task

model, but it ignores the resource share problem and the task will

miss its deadline. The algorithm presented in [20] considers the

resource share problem, but it focuses on the periodic task model

and assumes that the linear relationship between the speed and

the execution time of the task. In addition, it schedules the task by

the EDF scheduling policy. The algorithm presented in [22] consid-

ers the resource share problem and uses the RM scheduling policy,

but it focuses on the periodic task model and assumes that the

linear relationship between the speed and the execution time of

the task. To the best of our knowledge, this is a first work to con-

sider the shared resource for sporadic task model which is based

on the RM scheduling policy. In addition, it takes the speed tran-

sition overhead into consideration, and it considers the non-linear

relationship between the speed and the execution time of the task.

Most importantly, our algorithm can meet deadlines constraints.

3. Preliminaries

3.1. System model

We consider a sporadic task set in hard real time systems that

shares a set of serially reusable, single-unit resources. This model

comes from [19] . A set serially reusable, single-unit resource is a

software object, e.g., a data structure. It is shared among a group

of tasks, and it must be accessed in a mutually exclusive manner

[19] . For example, within the context of a concurrent programming

language in which shared data is encapsulated within a monitor

[24] , a resource would be an individual monitor. A sporadic task set

and a reusable resource set are represented as T = { T 1 , T 2 , . . . , T n }
and R = { R 1 , R 2 , · · · , R m

} , respectively. A sporadic task T i can be de-

scribed by a 3-tuple (e i , r i , p i) [19,21] , where e i is the worst case

execution time (WCET) of task T i under the maximum processor

speed. r i is the resource requirement of the task T i . It can be rep-

resented by an integer (1 ≤ r i ≤ m). If r i � = 0, the task T i needs

a resource R r i and other task which needs the resource R i will be

pended. This can ensure that the resource can be mutually exclu-

sive accessed. If r i = 0 , then the task T i doesn’t have resource re-

quirements. p i is the minimum time interval between the release

of two consecutive instances of a task. The minimum time interval

p i is arranged in the non-decreasing order, i.e. p 1 ≤ p 2 ≤, . . . , ≤ p n .

We assume that the relative deadline of a task is equal to its min-

imum time interval and that each task can access at most one re-

source at a time. In addition, we ignore the scheduling overhead,

such as context-switching overhead, task selection overhead in this

paper.

Let P j be the shortest minimum time interval task that uses re-

source R j (1 ≤ j ≤ m) and it can be expressed P j = min

1 ≤i ≤n
(p i | r i = j) .

Let LR i be the last release time of task T i . We denote T i, j as j th in-

stance of task T i and assume that a variable speed processor can

be operated at a set of continuous speed [S min , S max], where S min

and S max are the minimum speed and the maximum speed of the

processor, respectively. We normalize the speed with the S max , i.e.

S max = 1 . 0 . According to [25] , there are time overheads resulting

from the speed-switching. We denote TO ij as the time overhead of

the processor speed changes from S i to S j . TO ij can be expressed

[25] as follows

T O i j = K ·
∣∣S i − S j

∣∣ (1)

Where K is a constant factor.

The worst case execution time can be divided into two parts

[4] , one is the frequency-dependent execution time (on-chip),

the other is frequency-independent execution time (off-chip). The

frequency-independent execution time contains the I/O device ac-

cess latency and the main memory access time. The worst case

execution time of task T i with the speed of S i can be expressed as

follows:

e i =

x i
S i

+ y i (2)

where x i is the frequency-dependent execution time, y i is

frequency-independent execution time. We denote ρ as the off-

chip workload and it can be expressed by ρ =

y i
e i

. Let U tot be the

system utilization and it can be expressed by U tot =

n ∑

i =1

e i
p i

.

Download English Version:

https://daneshyari.com/en/article/461213

Download Persian Version:

https://daneshyari.com/article/461213

Daneshyari.com

https://daneshyari.com/en/article/461213
https://daneshyari.com/article/461213
https://daneshyari.com

