
Microprocessors and Microsystems 45 (2016) 198–207

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A runtime fault-tolerant routing algorithm based on region flooding in

NoCs

Lu Wang

a , b , ∗, Sheng Ma

a , b , Zhiying Wang

a , b

a State Key Laboratory of High Performance Computing, National University of Defense Technology, China
b College of Computer, National University of Defense Technology, Changsha, China

a r t i c l e i n f o

Article history:

Received 7 April 2015

Revised 9 May 2016

Accepted 12 May 2016

Available online 14 May 2016

Keywords:

Reliability

Network-on-chip

Fault tolerance

Communication protocol

Region flooding algorithm

a b s t r a c t

Aggressive scaling of the CMOS process technology allows the fabrication of highly integrated chips, and

enables the design of the network-on-chip (NoC). However, it also leads to widespread reliability prob-

lems. A reliable NoC system must operate normally even in the face of a lot of transistor failures. Aiming

towards permanent faults on communication links, we introduce a fault-tolerant MPI-like communication

protocol. It detects the link failure if there exist unresponsive requests and automatically starts the new

path exploration. The region flooding algorithm is proposed to search for a fault-free path and reroute

packets to avoid system stalls. The experimental result shows our approach significantly reduces the la-

tency compared with the basic flooding algorithm. The maximum latency reduction is 25% under the bit

complement traffic pattern. Also, it brings only 2% fault tolerance loss.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Moore’s Law scaling is continuing to yield even higher tran-

sistor density with each succeeding process generation, leading

the design of the network-on-chip (NoC). Unfortunately, the deep

sub-micro CMOS process technology is marred by increasing sus-

ceptibility to wear out [1] . Widespread reliability challenges are

expected in nearest fabrication technologies. Building a fault-

tolerant NoC system should be concerned as a necessity. Actually,

traditional fault-tolerant algorithms such as using repetitive struc-

tures [2–4] are infeasible for the NoC due to area restrictions [5] .

Several solutions have been proposed to design a reliable NoC sys-

tem [6–8] , especially for transient or permanent faults on links or

routers. These approaches generally provide reliability from four

different hierarchies: link control, router control, network interface

control and end to end control.

In this article, we mainly address permanent and hard errors

on links which result in flit dropping from the hierarchy of end

to end control. The error control generally involves three basic

steps: detection, containment, and recovery [9] . However, previous

works mostly focus only on one step of them. We try to establish

an integrated hardware-software framework involving the runtime

detection of faulty links, containment of link failure and reconfigu-

ration of healthy routes. Hence, this paper proposes a fault-tolerant

∗ Corresponding author.

E-mail addresses: wwanglu1991@gmail.com , 734809187@qq.com (L. Wang),

masheng@nudt.edu.cn (S. Ma), zywang@nudt.edu.cn (Z. Wang).

MPI-like communication protocol. It detects link failure if there are

unresponsive requests and automatically starts the new path ex-

ploration.

A key issue to be solved is providing a fault-tolerant routing

algorithm, which is discussed in several works [10–13] . A good

fault-tolerant routing algorithm means low route latencies and

minimal extra consumption. However, most proposed algorithms

[10–12] have special restrictions on the number of faulty links as

well as their locations.

Watchter et al. [13] have coped with this problem recently.

To provide high scalability, they adopted a typical MPI-like proto-

col for core-to-core communication. The source node detects link

failure through unresponsive requests and broadcasts seek pack-

ets through the entire mesh NoC to obtain an alternative healthy

route. This approach takes advantage of the path redundancy be-

tween a pair of nodes and successfully combines high performance

of hardware with high flexibility of software.

Although broadcasting seek packets to all other nodes provides

complete reachability, it also brings unnecessary packet transmis-

sions. Actually, in most cases, we can find an alternative path

within the minimum rectangle defined by source and destination

nodes. Based on this observation, we introduce a region flooding

algorithm to efficiently search for a fault-free path. It makes use of

the NoC’s regular structure to direct a search following the min-

imal path to the destination and dramatically improves network

efficiency by limiting the search area.

Generally, a better fault tolerance means a worse performance.

Although Wachter et al.’s methodology [13] can perform the best

http://dx.doi.org/10.1016/j.micpro.2016.05.004

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.05.004&domain=pdf
mailto:wwanglu1991@gmail.com
mailto:734809187@qq.com
mailto:masheng@nudt.edu.cn
mailto:zywang@nudt.edu.cn
http://dx.doi.org/10.1016/j.micpro.2016.05.004

L. Wang et al. / Microprocessors and Microsystems 45 (2016) 198–207 199

fault tolerance, our region flooding approach significantly opti-

mizes the latency with little fault tolerance loss. By analyzing the

synthesized influence of fault tolerance and latency, we conclude

that our approach is suitable for NoCs, especially for large systems

with low fault rates.

Our contributions concentrate on two aspects. First of all, our

design arrives at an optimal trade-off between fault tolerance

and performance which has not been discussed by previous work

[10–17] . Next, our work simultaneously addresses fault detection,

containment and recovery.

The rest of the paper is organized as follows. Section 2 reviews

related work. Section 3 presents a fault-tolerant MPI-like commu-

nication protocol. Section 4 proposes the design of the NoC archi-

tecture and the network interface. Section 5 introduces our ap-

proach of searching for a fault-tolerant route and also discusses

the deadlock avoidance mechanism and router pipeline. The simu-

lation as well as evaluation are presented in Section 6 . After that,

we draw a conclusion in Section 7 .

2. Related work

Fault-tolerant routing algorithms have been discussed for many

years. Previous works mostly focus on adaptive fault-tolerant rout-

ing algorithms for mesh networks. Chien and Kim [10] proposed

the fault-tolerant planar adaptive routing (PAR) algorithm for n-

dimensional meshes. Their algorithms can tolerate rectangle faults

with no overlapping of f-rings. Su and Shin [11] proposed an adap-

tive fault-tolerant routing algorithm for n-dimensional meshes.

Their algorithms can tolerate a disconnected rectangular block in

an n-dimensional mesh. However, these algorithms can only be

used in special topologies or special region shapes such as L, T

or +.

Recently, some topology-agnostic fault-tolerant routing algo-

rithms are discussed [14–17] . Dumitras et al. [15] proposed a prob-

abilistic flooding scheme. Costas et al. [16] introduced a deadlock

free hybrid routing algorithm, utilizing load-balancing routing on

fault-free paths to support high performance and providing pre-

reconfigured escape path in the vicinity of faults. Aisopos et al.

[17] obtained an alternative path by broadcasting reconfiguration

flags upon any number of concurrent network faults in any loca-

tion. Watcher et al. [13] presented a novel fault-tolerant communi-

cation protocol that takes advantage of intrinsic redundancy of the

NoC to provide alternative paths between any source-target pair,

even in the presence of multiple faults. Different from these al-

gorithms, our approach restrains the search in a rectangular area

rather than the entire NoC, which dramatically decreases the la-

tency and improves network efficiency.

There is also some work on designing fault-tolerant message

passing libraries as a fault recovery method [18–21] . For instance,

Batchu et al. [20] tested unresponsive processes by implementing

self-checking threads which use heartbeat messages to monitor the

MPI/FT progress. Aulwes and Daniel [21] proposed fault-tolerant

mechanisms for the MPI such as the checksum, message retrans-

mission, and automatic message re-routing. The timeout seeking

mechanism in our proposed fault-tolerant MPI-like communication

has similar idea with these work.

3. Fault-tolerant MPI-like communication protocol

3.1. Basic communication protocol

The basic communication protocol between nodes in this

work is message passing. Two MPI-like primitives are adopted:

MPI_Send() and MPI_Receive() . The communication protocol in our

approach derives from the non-blocking synchronous communica-

tion mode. Fig. 1 illustrates the communication procedure between

Fig. 1. Basic MPI-like communication protocol between two nodes.

two tasks. Particularly, the task A and B are mapped to the node A

and B respectively.

During one point to point communication, task A executes the

function MPI_Send () on the source node. First, the node A sends

a request message through the NoC. Being a control message, the

request message has a single flit. After sending a request message,

some information such as the destination, the tag, the starting ad-

dress and the size of the data message should be written to ‘ msg

buffer ’ which is a dedicated memory space or register stacks in the

node A. At the same time, the computation could be carried on in

the task A. Only after an acknowledgment from the destination has

been received, the node A will free the corresponding ‘ msg buffer ’

and send the data message to the node B.

On the destination node, the task B executes the function

MPI_Receive() and waits for a request message. After receiving the

expected request message, it will send an acknowledgment (ack)

to the source node. Once there exist faulty links in the communi-

cation path which cause interruptions for the request or acknowl-

edgement messages, the data message will not be transferred nor-

mally and the system will stall. So we improve this communication

protocol by adding fault tolerant designs to ensure service quali-

ties.

3.2. Fault tolerant communication protocol

Fig. 2 describes the proposed fault-tolerant communication pro-

tocol. It illustrates two fault scenarios, the link failure from A to B

when sending a request message and link failure from B to A when

sending an acknowledgment message. In order to tolerate these

faults and provide a reliable service, a timeout seeking mechanism

has been added. We suppose that there are faulty links in the orig-

inal path if the task A cannot receive an acknowledgment from the

task B during a scheduled time. Particularly, the scheduled time

d_time is set according to the average latency in the fault-free cir-

cumstances. After that, a seek message will be triggered to find a

fault-free path between source and destination nodes. When the

node B receives the seek message, it will return a track message

which contains a recording of the new fault-free route. The node A

then updates the route table and delivers the data message with

the new healthy route. However, new faults may appear in this

path. In order to deal with the occasion where new faults appear

during the current data transmission, the node B should send a

seek packet to the node A if it does not receive expected packets

Download English Version:

https://daneshyari.com/en/article/461216

Download Persian Version:

https://daneshyari.com/article/461216

Daneshyari.com

https://daneshyari.com/en/article/461216
https://daneshyari.com/article/461216
https://daneshyari.com

