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Wazewski's principle is considered, with the further restriction 1 < p <2 and q; > 2

We manage to prove the existence of a radial ground state, for
more generic functions f(u, |X|) and also in the case p > 2 and
1 < g1 < 2. We also prove the existence of uncountably many ra-
dial singular ground states under very weak hypotheses.
The proofs combine an energy analysis and a shooting method. We
also make use of Wazewski's principle to overcome some difficul-
ties deriving from the lack of regularity.
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1. Introduction

The aim of this paper, along with [11], is to investigate positive radial solutions for equation of
this type

div(Vu|Vu|P~%) + f(u,[x]) =0, (1.1)

where x € R", and f(u, |X|) is negative as u — 0 and positive and subcritical with respect to the
Sobolev critical exponent as u — oo.

Since we just consider radially symmetric solutions we will in fact study the following singular
ODE where we have set r = |X|:

n—1
(' P~2) + Tu’|u’|l’*2 + f(u,r)=0. (1.2)

Here and later we denote by ’ the derivative with respect to r. The prototypical nonlinearity f we are
considering is

f,r) =—kiMululf 2 + ka(ryulul®22, (13)

where kq and k; are positive functions which are locally Lipschitz continuous and q1 < g2 < p*, where
p* is the Sobolev critical exponent. We recall that p* is usually defined just when n > p and we have
p*= %; when n < p we set p* = oco. We use the following notation: we call classic a solution of

(1.2) satisfying
u(0)=d>0 and u'(0)=0, (1.4)

and sometimes we denote by u(d, r) such a solution to stress the dependence on the initial condition;
we call singular a solution u(r) such that lim,_.q u(r) = oco.

In particular we focus our attention on the problem of existence of ground states (G.S.), of singular
ground states (S.G.S.) and of crossing solutions. By G.S. we mean a nonnegative classic solution u(x)
defined in the whole of R" such that limx—, o u(X) = 0. An S.G.S. of Eq. (1.1) is a singular nonnegative
solution v(x) such that

lim v(X) =+oc0 and lim v(x)=0.
1x|]—0 |X|—>+00

Crossing solutions are radial solutions u(r) such that u(r) > 0 for any 0 <r < R and u(R) =0 for
some R > 0, so they can be considered as solutions of the Dirichlet problem in the ball of radius R.
Here and later we write u(r) for u(x) when |x| =r and u is radially symmetric.

In our equation an important role is played also by the critical value p,, which is the largest g
such that the trace operator y : WP (£2) — L9(3$2) is continuous; ie. p, := pglf’p” when n > p;
when n < p we set p, = oco. We will always assume the following:

o The function f (u, r) is continuous in R, Lipschitz continuous in
both the variables for u, r > 0.
FO e f(—u,r)=—f(u,r) foranyr > 0and for any u € R.
eThereare v > 0and p < q < p* such that, forany 0 <r v
f@ur)

T = ao(r) > 0 and ag(r) is continuous.

limy - oo

We have implicitly assumed that lim,_.¢ f(u,r) is bounded. In fact this hypothesis is not really re-
strictive since, even when lim,_,¢ f(u,r) = +oo for any u > 0, usually it is possible to reduce the
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