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We consider the following equation

�pu(x) + f
(
u, |x|) = 0,

where x ∈ R
n , n > p > 1, and we assume that f is negative for |u|

small and limu→+∞ f (u,0)

u|u|q−2 = a0 > 0 where p∗ = p(n−1)
n−p < q < p∗ =

np
n−p , so f (u,0) is subcritical and superlinear at infinity.
In this paper we generalize the results obtained in a previous pa-
per, [11], where the prototypical nonlinearity

f (u, r) = −k1(r)u|u|q1−2 + k2(r)u|u|q2−2

is considered, with the further restriction 1 < p � 2 and q1 > 2.
We manage to prove the existence of a radial ground state, for
more generic functions f (u, |x|) and also in the case p > 2 and
1 < q1 < 2. We also prove the existence of uncountably many ra-
dial singular ground states under very weak hypotheses.
The proofs combine an energy analysis and a shooting method. We
also make use of Wazewski’s principle to overcome some difficul-
ties deriving from the lack of regularity.
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1. Introduction

The aim of this paper, along with [11], is to investigate positive radial solutions for equation of
this type

div
(∇u|∇u|p−2) + f

(
u, |x|) = 0, (1.1)

where x ∈ R
n , and f (u, |x|) is negative as u → 0 and positive and subcritical with respect to the

Sobolev critical exponent as u → ∞.
Since we just consider radially symmetric solutions we will in fact study the following singular

ODE where we have set r = |x|:
(
u′|u′|p−2)′ + n − 1

r
u′|u′|p−2 + f (u, r) = 0. (1.2)

Here and later we denote by ′ the derivative with respect to r. The prototypical nonlinearity f we are
considering is

f (u, r) = −k1(r)u|u|q1−2 + k2(r)u|u|q2−2, (1.3)

where k1 and k2 are positive functions which are locally Lipschitz continuous and q1 < q2 < p∗ , where
p∗ is the Sobolev critical exponent. We recall that p∗ is usually defined just when n > p and we have
p∗ = np

n−p ; when n � p we set p∗ = ∞. We use the following notation: we call classic a solution of
(1.2) satisfying

u(0) = d > 0 and u′(0) = 0, (1.4)

and sometimes we denote by u(d, r) such a solution to stress the dependence on the initial condition;
we call singular a solution u(r) such that limr→0 u(r) = ∞.

In particular we focus our attention on the problem of existence of ground states (G.S.), of singular
ground states (S.G.S.) and of crossing solutions. By G.S. we mean a nonnegative classic solution u(x)

defined in the whole of R
n such that lim|x|→∞ u(x) = 0. An S.G.S. of Eq. (1.1) is a singular nonnegative

solution v(x) such that

lim|x|→0
v(x) = +∞ and lim|x|→+∞ v(x) = 0.

Crossing solutions are radial solutions u(r) such that u(r) > 0 for any 0 � r < R and u(R) = 0 for
some R > 0, so they can be considered as solutions of the Dirichlet problem in the ball of radius R .
Here and later we write u(r) for u(x) when |x| = r and u is radially symmetric.

In our equation an important role is played also by the critical value p∗ , which is the largest q
such that the trace operator γ : W 1,p(Ω) → Lq(∂Ω) is continuous; i.e. p∗ := p(n−1)

n−p when n > p;
when n � p we set p∗ = ∞. We will always assume the following:

F0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

• The function f (u, r) is continuous in R
2, Lipschitz continuous in

both the variables for u, r > 0.

• f (−u, r) = − f (u, r) for any r � 0 and for any u ∈ R.

• There are ν > 0 and p < q < p∗ such that, for any 0 � r � ν

limu→∞ f (u,r)
|u|q−1 = a0(r) > 0 and a0(r) is continuous.

We have implicitly assumed that limr→0 f (u, r) is bounded. In fact this hypothesis is not really re-
strictive since, even when limr→0 f (u, r) = +∞ for any u > 0, usually it is possible to reduce the
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