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Abstract

We discuss the Cauchy problem for the stochastic Benjamin–Ono equation in the function class
Hs(R), s > 3/2. When there is a zero-order dissipation, we also establish the existence of an in-
variant measure with support in H 2(R). Many authors have discussed the Cauchy problem for the
deterministic Benjamin–Ono equation. But our results are new for the stochastic Benjamin–Ono
equation. Our goal is to extend known results for the deterministic equation to the stochastic equa-
tion.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

In this paper we will discuss the Cauchy problem for the stochastic Benjamin–Ono
equation. Our main goal is to establish the existence of a solution to the Cauchy problem
and to prove the existence of an invariant measure. The Cauchy problem is formulated as
follows:

ut + uux +H(uxx) =
∞∑

j=1

gj

dBj

dt
, (t, x) ∈ (0,∞) × R, (0.1)
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u(0, x) = u0(x), x ∈ R, (0.2)

where H(· · ·) is the Hilbert transform and gj = gj (t, x), j = 1,2, . . . . The right-hand side
corresponds to a random noise which is white in the time variable. When gj ≡ 0 for all
j � 1, (0.1) reduces to the well-known Benjamin–Ono equation, which describes unidirec-
tional propagation of nonlinear dispersive waves [2,17], and has been extensively studied
by many authors. See [1,8,9,12,15,16,18,20,23]. However, to the author’s knowledge, the
Cauchy problem for the stochastic Benjamin–Ono equation (0.1) has not been investi-
gated. Since the K-dV equation is the most well-known among all model equations which
describe dispersive waves, other equations are often compared to the K-dV equation. The
K-dV equation has stronger dispersion mechanism than the Benjamin–Ono equation, and
the existence of a solution can be established through the variation of constants formula
and the semigroup associated with the principal part of the equation. This approach has
a stochastic version for stochastic evolution equations, and gives rise to a stochastic con-
volution when the forcing term is a white noise. Hence, for the stochastic K-dV equation,
[6,19] proved the existence of a solution by careful analysis of the stochastic convolution.
This approach covers a broad class of stochastic evolution equations. The monograph [4]
presents a comprehensive study of the general stochastic evolution equations using this
method. However [16] showed that Picard iteration scheme via the variation of constants
formula fails the deterministic Benjamin–Ono equation. Thus we have to employ a differ-
ent approach. By regularizing the equation and the data, we first obtain a pathwise solution
which is sufficiently smooth in the space variable for each sample point. We need sufficient
regularity of solutions to justify manipulations for the energy estimates. This first step is
essentially the same as for the deterministic equation; see [1]. The second step is to obtain
necessary stochastic a priori estimates, where integral invariants play a crucial role. This
requires various new stochastic estimates. We will borrow some technical estimates for
the deterministic equation from [1] which presents a comprehensive analysis of integral
invariants. We also borrow some analytical tools from [18]. Then, by a measure-theoretic
argument, we can obtain a desired solution for the original equation. Here we will establish
an existence result in the function class Hs , s > 3/2. We also obtain estimates of the mean
energy for s = 2. The details of proof will be presented in Section 2 below.

After the global Cauchy problem, we will prove the existence of an invariant measure
when Eq. (0.1) includes an additional term of zero-order dissipation. Such a term can de-
scribe variable depth in the flow model; see [14]. An invariant measure is an important
object in the study of stochastic dynamics. It corresponds to a stationary solution of a
deterministic equation. If the initial datum has the probability distribution equal to an in-
variant measure, then the probability distribution of the evolving solution is invariant in
time. There are some general results on the existence of invariant measures for stochastic
evolution equations; see [4,5]. But the method of such results do not cover the stochastic
Benjamin–Ono equation. Here we will use the recent result on a certain class of stochastic
evolution equations [13, Theorem 1.1], where some sufficient conditions for the existence
of an invariant measure are presented. We will verify those conditions. This involves var-
ious technical issues. One of the required conditions is that the time-average of the norm
of a solution in the basic function class must be bounded uniformly in time. Hence, we
need an extra term of zero-order dissipation, which dissipates the energy due to the ran-
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