
The Journal of Systems and Software 120 (2016) 114–132

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Static analysis by abstract interpretation of functional properties

of device drivers in TinyOS

Abdelraouf Ouadjaout a , b , c , d , ∗, Antoine Miné c , d , Noureddine Lasla

a , b , Nadjib Badache

a , b

a CERIST Research Center, Algiers, Algeria
b USTHB University, Algiers, Algeria
c École Normale Supérieure, Paris, France
d University Pierre and Marie Curie, LIP6, Paris, France

a r t i c l e i n f o

Article history:

Received 24 May 2015

Revised 6 June 2016

Accepted 21 July 2016

Available online 27 July 2016

Keywords:

Static analysis

abstract interpretation

wireless sensor networks

device drivers

a b s t r a c t

In this paper, we present a static analysis by Abstract Interpretation of device drivers developed in the

TinyOS operating system, which is considered as the de facto system in wireless sensor networks. We fo-

cus on verifying user-defined functional properties describing safety rules that programs should obey in

order to interact correctly with the hardware. Our analysis is sound by construction and can prove that

all possible execution paths follow the correct interaction patterns specified by the functional property.

The soundness of the analysis is justified with respect to a preemptive execution model where interrupts

can occur during execution depending on the configuration of specific hardware registers. The proposed

solution performs a modular analysis that analyzes every interrupt independently and aggregates their

results to over-approximate the effect of preemption. By doing so, we avoid reanalyzing interrupts in ev-

ery context where they are enabled which improves considerably the scalability of the solution. A num-

ber of partitioning techniques are also presented in order to track precisely some crucial information,

such as the hardware state and the tasks queue. We have performed several experiments on real-world

TinyOS device drivers of the ATmega128 MCU and promising results demonstrate the effectiveness of our

analysis.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Wireless sensor networks are autonomous systems composed of

a set of tiny embedded nodes with limited computational power

that can communicate with each other using short range wireless

transmissions. Using distributed routing algorithms, these systems

are able to establish a multihop network in order to cover large

geographic areas. The main aim of this technology is to remotely

monitor (possibly harsh) environments by equipping nodes with

specific sensors and propagating their measurements through the

ad hoc network towards the end-users. Wireless sensor networks

have gained great popularity due to their wide variety of applica-

tions (such as habitat and health monitoring, smart cities, etc) and

are considered as a key enabler of the future Internet of Things

(Atzori et al., 2010).

∗ Corresponding author.

E-mail addresses: aouadjaout@cerist.dz , ouadjaout@gmail.com (A. Ouadjaout),

antoine.mine@lip6.fr (A. Miné), nlasla@cerist.dz (N. Lasla), badache@cerist.dz

(N. Badache).

The correct operation of these systems relies on the robustness

of the programs controlling the nodes. These programs are com-

posed of a hierarchy of software components with different roles

as depicted in Fig. 1 . As we can see from this architecture, device

drivers play a central role among the other components. For in-

stance, the kernel relies on device drivers in order to manage the

power of the MCU (Microcontroller Unit) and configure the inter-

rupt masks. The networking protocols interact heavily with the de-

vice drivers in order to exchange packets with other nodes through

the wireless transceiver and retrieve the signal quality of commu-

nication links. Finally, device drivers offer to user applications the

access to sensor readings in addition to other hardware compo-

nents such as EEPROM chips for external data storage.

Therefore, it is vital to verify the reliability of device drivers

since a single software error may affect the operation of the entire

network as all the sensors run the same software. We can divide

these failures into two categories depending on the semantic layer

of the error. On the one hand, the driver can crash due to a generic

language error by violating the specifications of the programming

language, such as out-of-bounds array access and null pointer

dereferences. This type of errors has been tackled by most existing

http://dx.doi.org/10.1016/j.jss.2016.07.030

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.07.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.07.030&domain=pdf
mailto:aouadjaout@cerist.dz
mailto:ouadjaout@gmail.com
mailto:antoine.mine@lip6.fr
mailto:nlasla@cerist.dz
mailto:badache@cerist.dz
http://dx.doi.org/10.1016/j.jss.2016.07.030

A. Ouadjaout et al. / The Journal of Systems and Software 120 (2016) 114–132 115

MCU

Radio Sensors

Device drivers

Kernel

Networking

User apps

Software

Hardware

Fig. 1. Simplified software architecture of a typical sensor program.

driver verification solutions (such as Regehr (2005) ; Brauer et al.

(2010) ; Bucur and Kwiatkowska (2011) ; Kroening et al. (2015)).

On the other hand, logic errors are related to the way the driver

and its device interact. They occur when this communication

transgresses the manufacturer’s rules that specify how to correctly

access the hardware functionalities. Existing tools offer developers

the possibility to instrument their source code with assertions in

order to track the proper evolution of their driver. However, these

assertions should be inserted manually and may require modifi-

cations if the program is changed. In addition, assertions about

program variables and hardware registers may not be appropriate

to easily express some requirements such as complex temporal

properties (i.e. , an ordering of actions to perform).

Additionally, a major challenge hampering the verification of

device drivers is concurrency that induces generally a dramatically

large space of possible execution paths that computers can not

represent nor manipulate. We can find two distinct forms of con-

currency in wireless sensor systems. Interrupts are the main source

of concurrency and can lead to complex execution traces and unex-

pected situations not considered during design time since they can

preempt the execution of the program at any moment. The sec-

ond concurrency form is related to hardware operations that can

be performed in parallel to the execution of the program. For ex-

ample, the MCU contains several sub-systems that can answer the

program’s requests in an asynchronous way without suspending its

execution. Generally, the hardware manufacturer provides specific

guidelines for driver developers to track the concurrent evolution

of the hardware state. Existing verification tools consider only the

first form of concurrency and are therefore inadequate to analyze

effectively the behavior of the driver in the presence of these asyn-

chronous hardware operations.

In this paper, we propose a static analysis for verifying the

absence of logic errors in device drivers by considering all possible

execution paths emerging from both forms of concurrency. Our

analysis is tailored for programs running the TinyOS operating

system (Levis et al., 2004), which is the most popular system for

this technology. The analysis is performed statically , which means

that it is executed at compile time in order to ensure that the

program is correct before deploying it. In order to find the logic

errors, we require the developer to provide a functional property

– expressed as a special type of register automata (Kaminski and

Francez, 1994) – that specifies the pattern of correct hardware

interactions for performing a particular action, along with for-

bidden hardware states that should be avoided. The property is

tied to the hardware specification, not to the driver, hence it can

be reused without modification to analyze different versions of a

driver, or even completely different implementations of it, which

we illustrate in our experimental results. In this work, we exem-

plify the applicability of our approach on several drivers of the

ATmega128 MCU found in many popular sensor platforms such as

MicaZ and Waspmote. Nevertheless, the analysis is not restricted

to this hardware platform and can be easily extended to other

low-power architectures, such as MSP430 or ARM Cortex M0.

The analysis is developed within the theory of Abstract Inter-

pretation (Cousot and Cousot, 1977), a general and successful for-

mal framework for constructing sound approximations of undecid-

able (or too costly) problems about the semantics of large pro-

grams (Blanchet et al. (2002) ; Cousot et al. (2005)). Our analy-

sis computes a conservative over-approximation of the reachable

states of the system (including program variable values and hard-

ware state) for all possible executions. No behavior, in particular,

no hardware error is omitted, which makes our analysis sound by

construction and able to certify the correctness of the driver w.r.t.

to the specification. Our approach can suffer however from false

alarms due to the over-approximations necessary to scale up. Note

that other state-of-the-art formal analyzers of interrupt-based pro-

grams are generally based on bounded model checking techniques

that are less vulnerable to the problem of false alarms, but can not

provide guarantee about entire search space coverage and thus can

suffer from ”false negative” (i.e. , missing actual bugs), which makes

them more adequate to bug finding than certification. That being

said, in practice, our analysis can achieve a high precision level

thanks to carefully constructing designed abstractions adequate to

driver verification and TinyOS semantics.

The remaining of the paper is organized as follows.

Section 2 provides a description of TinyOS and how the dif-

ferent software components are orchestrated during execution. An

example of a TinyOS driver is discussed in Section 3 , where we

show also how we express a hardware functional property related

to this driver. Section 4 provides a short introduction to the theory

of Abstract Interpretation. The details of our analysis are provided

in Sections 6 and 7 . To simplify the presentation of our abstract in-

terpreter, we proceed in two steps. First, we present in Section 6 a

restricted version of our analysis limited to sequential executions

where interrupt preemption is not supported. This simplification

will allow us to focus on the needed abstraction techniques for

dealing with the hardware state and TinyOS scheduler. After that,

we extend this techniques in Section 7 in order to handle arbitrary

interrupts preemption during execution. Experimental results of

the analysis of real-world drivers are presented in Section 8 . We

discuss in Section 9 the related work and we end the paper in

Section 10 by a conclusion.

2. TinyOS

TinyOS is an event-based operating system developed by Levis

et al. (2004) for low-power wireless sensor nodes. Thanks to its

small memory footprint, TinyOS can run on tiny constrained MCUs

that have 2–10 KB of SRAM and 32–128 KB of flash memory.

It supports a variety of hardware platforms with built-in device

drivers, networking protocols, security mechanisms, etc . TinyOS

programs are written in the nesC language (Gay et al., 2003), a

dialect of C that offers a modular programming paradigm for flexi-

ble organization of software components. During compilation, nesC

programs are translated into equivalent C programs using the ncc
compiler.

TinyOS programs are driven by a two-level preemption system

with the concepts of interrupts and tasks. Interrupts represent

the high priority preemption level. They play an important role

in designing power-efficient programs and are used to free up

the MCU from actively waiting for the occurrence of a particular

event. During these waiting periods, the microcontroller can either

enter various sleep modes to save energy or execute other waiting

Download	English	Version:

https://daneshyari.com/en/article/461242

Download	Persian	Version:

https://daneshyari.com/article/461242

Daneshyari.com

https://daneshyari.com/en/article/461242
https://daneshyari.com/article/461242
https://daneshyari.com/

