

Contents lists available at ScienceDirect

Journal of Differential Equations

DIEFERENTIA EQUATIONS

www.elsevier.com/locate/jde

On a class of nonlinear elliptic equations with fast increasing weight and critical growth *

Marcelo F. Furtado ^{a,*}, Olímpio H. Myiagaki ^b, João Pablo P. da Silva ^c

ARTICLE INFO

Article history: Received 2 January 2010 Revised 12 April 2010 Available online 27 April 2010

Keywords: Critical problems Self-similar solutions Positive solutions Nodal solutions

ABSTRACT

We are concerned with the existence of rapidly decaying solutions for the equation

$$-\operatorname{div}(K(x)\nabla u) = \lambda K(x)|x|^{\beta}|u|^{q-2}u + K(x)|u|^{2^*-2}u, \quad x \in \mathbb{R}^N,$$

where $N\geqslant 3$, $2\leqslant q<2^*:=2N/(N-2)$, $\lambda>0$ is a parameter, $K(x):=\exp(|x|^{\alpha}/4)$, $\alpha\geqslant 2$ and the number β is given by $\beta:=(\alpha-2)\frac{(2^*-q)}{(2^*-2)}$. We obtain a positive solution if $2< q<2^*$ and a sign changing solution if q=2. The existence results depend on the values of the parameter λ . In the proofs we apply variational methods.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the nonlinear equation

$$-\operatorname{div}(K(x)\nabla u) = \lambda K(x)|x|^{\beta}|u|^{q-2}u + K(x)|u|^{2^*-2}u, \quad x \in \mathbb{R}^N,$$
(P)

where $N \geqslant 3$, $2 \leqslant q < 2^* := 2N/(N-2)$, $\lambda > 0$ is a parameter, $K(x) := \exp(|x|^{\alpha}/4)$, $\alpha \geqslant 2$ and the number β is given by

^a Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília-DF, Brazil

^b Departamento de Matemática, Universidade de Federal de Viçosa, 36570-000, Viçosa-MG, Brazil

^c Departamento de Matemática, Universidade Federal do Pará, 66075-110, Belém-PA, Brazil

 $^{^{\}scriptsize{\mbox{\tiny{$^{\dot{}}}$}}}$ The first and second authors were partially supported by CNPq/Brazil.

^{*} Corresponding author.

E-mail addresses: mfurtado@unb.br (M.F. Furtado), olimpio@ufv.br, ohmiyagaki@gmail.com (O.H. Myiagaki), jpablo_ufpa@yahoo.com.br (J.P.P. da Silva).

$$\beta := (\alpha - 2) \frac{(2^* - q)}{(2^* - 2)}.$$

As pointed out in [7], one of the motivations for studying the above equation relies on the fact that, for $\alpha = q = 2$ and $\lambda = (N-2)/(N+2)$, it appears when one tries to find self-similar solutions

$$v(x, t) = t^{\frac{2-N}{N+2}} u(xt^{\frac{-1}{2}})$$

to the parabolic equation

$$v_t - \Delta v = |v|^{\frac{4}{N-2}}v, \quad \mathbb{R}^N \times (0, +\infty).$$

The radially symmetric case with $\alpha = q = 2$ was considered in [1]. As far as we know, the first variational approach was done by Escobedo and Kavian in [6]. In that article the authors have considered $\alpha = q = 2$ and $N \ge 3$, and have proved that the existence of positive solutions is related with the interaction of the parameter λ with the first positive eigenvalue of the associated linear problem

$$-\operatorname{div}(K(x)\nabla u) = \lambda K(x)|x|^{\alpha-2}u, \quad x \in \mathbb{R}^{N}.$$
 (LP)

Among other results, they have noticed a dichotomy in the existence range of λ for N=3, relative to space dimensions $N \ge 4$. More precisely, for $N \ge 4$, there is a solution if and only if $\lambda \in (N/4, N/2)$. If N=3, there is a positive solution for $\lambda \in (1,3/2)$, and there is no solution for $\lambda \leq 3/4$ and $\lambda \geq 3/2$.

Later on, many authors considered the case $\alpha = q = 2$ and addressed questions of existence, symmetry and asymptotic behavior of solutions of (P), of the associated parabolic equation and its variants (see [8,10,12,9] and references therein). We also quote the paper of Ohya [11], where some results for a p-Laplacian type operator can be found.

Recently, Catrina, Furtado and Montenegro [4] have obtained some results for $\alpha \ge 2$ and q = 2. After calculating the first eigenvalue of (LP) as $\lambda_1 = \alpha(N-2+\alpha)/4$, they have proved that, if $2 \le$ $\alpha \leq N-2$, then the problem (P) has a positive solution if, and only if, $\lambda \in (\lambda_1/2, \lambda_1)$. If $\alpha > N-2$ and $\lambda \in (\alpha^2/4, \lambda_1)$ then the problem (P) has a positive solution. Moreover, also in this last case, the problem has no solution if $\lambda \le \lambda_1/2$ or $\lambda \ge \lambda_1$. So, if $\alpha > 2$, the critical dimension of the problem depends on the value of α .

Due to the presence of the critical Sobolev exponent in (P), it is natural to make a parallel with the Brezis and Nirenberg problem

$$-\Delta u = \lambda |u|^{q-2} u + |u|^{2^*-2} u, \quad u \in H_0^1(\Omega), \tag{BN}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain and $N \geqslant 3$. The aforementioned results of [6,4] can be viewed as versions of those ones presented in [2] for the above problem when q = 2. The nonexistence results for $\lambda \geqslant \lambda_1$ are a consequence of a Pohozaev type identity. In the case that $2 < q < 2^*$, this identity does not give any information. So, we can expect existence of solution for any $\lambda > 0$. A result in this direction to the problem (BN) was presented in [2, Section 2]. In our first result we give an answer for this question when we deal with the problem (P). More specifically, we shall prove the following result.

Theorem 1.1. The problem (P) has a positive solution in each of the following cases

- (i) $N \geqslant \alpha + 2, 2 < q < 2^*, \lambda > 0;$ (ii) $2 < N < \alpha + 2, 2^* \frac{4}{\alpha} < q < 2^*, \lambda > 0;$
- (iii) $2 < N < \alpha + 2$, $2 < q \le 2^* \frac{4}{\alpha}$, $\lambda > 0$ is sufficiently large.

Download English Version:

https://daneshyari.com/en/article/4612466

Download Persian Version:

https://daneshyari.com/article/4612466

Daneshyari.com