
Microprocessors and Microsystems 44 (2016) 17–21 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Assignment of unexpected tasks in embedded system design process 

Adam Górski ∗, Maciej J. Ogorzałek 

Department of Information Technologies, Jagiellonian University, Poland 

a r t i c l e i n f o 

Article history: 

Received 26 September 2015 

Revised 2 December 2015 

Accepted 3 January 2016 

Available online 8 January 2016 

Keywords: 

Embedded systems 

Unexpected tasks 

Co-design 

3D integrated circuits 

Co-synthesis 

Microprocessors and microcontrollers 

a b s t r a c t 

Embedded systems design process focuses on three areas: modeling, validation and implementation. Typ- 

ically such procedure assumes constant number of tasks in every instance of designing procedure. Thus 

the designer must predict all possible tasks executed by the system. Serious problems appear when the 

system has to execute unexpected tasks. In this case the design process must be repeated. We propose 

a new approach in embedded system design process which covers such situation. In the approach unex- 

pected tasks are assigned to previously allocated resources. Therefore the system can execute more tasks 

that were predicted by the designer. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays embedded systems and software can be found ev- 

erywhere. For example: modern cars (see. Srovnal et al. [7] , Chan- 

dra et al. [1] ), mobile phones (see Sun et al. [9] ), large group of 

medicine solutions (e.g. Masihpour et al. [6] , Shoeb et al. [10] , 

Ölveczky [11] ), face recognition (e.g. Acasandrei et al. [2] ), coor- 

dination of different teams in crisis management (e.g. Mahdjoub 

et al. [3] ), etc. 

Most of the papers assume distributed target architecture of 

embedded systems. In such a representation tasks are executed 

by Processing Elements (PEs). PEs can be divided on two groups: 

Programmable Processors (PPs) and Hardware Cores (HCs), which 

are connected in target architecture using Communication Links 

(CLs). 

Embedded system design process according to De Micheli et al. 

[23] consists of: modeling, validation and implementation phases. 

Modeling is the process which provides a hardware/software 

model of the system. A part of modeling process is cosynthesis 

(e.g. Densmore et al. [15] , Jozwiak et al. [8] ). Cosynthesis automat- 

ically generates the architecture of Embedded system using speci- 

fication given as a list of parallel processes. The process includes 

allocation of processors, task assignment and task scheduling. 

Cosynthesis methodologies can be divided on two basic groups: 

constructive (e.g. Deniziak et al. [12] ) and iterative improvement 

∗ Corresponding author. Tel.: +48508061976. 

E-mail addresses: a.gorski@uj.edu.pl (A. Górski), maciej.ogorzalek@uj.edu.pl (M.J. 

Ogorzałek). 

(e.g. Oh et al. [17] ). Constructive algorithms build system step by 

step choosing processing elements for each task separately. Itera- 

tive improvements methodologies start from suboptimal solution 

(usually the fastest) and try to improve system quality by mak- 

ing local changes. Large group of solutions are evolution algorithms 

like: simulated annealing (e.g. Eles et al. [22] ), genetic algorithms 

(e.g. Guo at al. [14] , Dick et al. [21] ) and adaptive methodologies 

(e.g. Górski et al. [4] ) which are able to adapt to the environment. 

Especially good results were obtained using genetic programming 

(Górski et al. [5] ). 

Validation (e.g. Ko et al. [13] ) verifies if system works properly 

and that all the requirement were satisfied. 

A really serious problem with system design process appears 

when unexpected tasks must be executed. Then in every exist- 

ing methodology all design process must be repeated. It is needed 

because every design methodology assumes constant number of 

tasks that are executed by the embedded system. Even papers 

that assume unexpected scenarios of embedded systems (e.g. Mise 

et al. [24] ) concentrate on security and faults detection (e.g. 

Kovalev et al. [25] ). In this work we propose a new approach to 

system design process. In our approach the designer can assign 

unexpected task to existing processing elements without repeat- 

ing the design process in the case where adding a new PE is not 

possible. That implies a possibility to react in situations when re- 

designing is impossible or only part of a design process can be 

repeated. The approach is also suitable when the system is de- 

sign re-use. We can also decrease designing costs and cost of the 

system. 

The paper is organized as follows: Section 2 describes a rep- 

resentation of embedded system, Section 3 includes problem 

http://dx.doi.org/10.1016/j.micpro.2016.01.001 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.01.001&domain=pdf
mailto:a.gorski@uj.edu.pl
mailto:maciej.ogorzalek@uj.edu.pl
http://dx.doi.org/10.1016/j.micpro.2016.01.001


18 A. Górski, M.J. Ogorzałek / Microprocessors and Microsystems 44 (2016) 17–21 

T2

T0

T1

T5 T6

10212

24 36

T3 T4

18 6

Fig. 1. Example of a task graph for a robot working on Mars. It consists of 7 nodes 

corresponding to 7 tasks T0-T6. The numbers at the edges correspond to amount of 

data that has to be sent between the tasks. 

Table 1 

Example database. 

Task PP1 C = 200 PP2 C = 250 HC1 

t c t c t c 

T0 100 12 103 10 30 100 

T1 87 23 60 34 5 93 

T2 45 18 50 20 3 60 

T3 90 9 86 8 10 95 

T4 35 5 40 8 2 40 

T5 22 1 30 3 2 55 

T6 190 25 150 30 25 150 

CL1, b = 6 c=3 c=2 c=10 

statement, Section 4 presents a methodology, Section 5 the exam- 

ple and in chapter 6 conclusions and future work are given. 

2. Representation of embedded system 

Some of the most popular representations of behavior of an 

embedded system are: task graph representation (this representa- 

tion was used in this paper) and conditional task graph (e.g. Xie 

et al. [26] ). Another important types of representation, amount 

others, are: c-code (e.g. Venkataramani et al. [16] ) and MATLAB 

representation (e.g. Banerjee et al. [19] ). 

Task graph G = {V, E} is consisted of nodes (V) and edges (E). 

In the graph each node v i Є V represents a task. Each edge e ij Є E 

represents amount of data that has to be transferred between two 

connected tasks v i and v j . Eles et al. [20] proposed the concept of 

an extended task graph. Klaus et al. [18] applied this concept for 

analysis of an autonomous robot. We decided to adapt part of this 

example to describe a robot working on the planet Mars. Fig. 1 

shows an example of task graph for that robot. 

The system described by above graph executes 7 tasks: T0, T1, 

T2, T3, T4, T5 and T6. Tasks T1, T2 and T3,T4, T5, T6 are parallel. 

An example database for the system is presented in Table 1. 

The values in the table were generated randomly. t is the time 

of the execution of a task, and c is the cost of execution the task 

or cost of connecting task to CL. C is a cost of a PP. The cost of HC 

is included in the cost of execution tasks. In the example there are 

three kinds of PE – two programmable processors and one hard- 

ware core. All PEs can be connected using one CL (CL1). All tasks 

can be executed by every resource, and CL1 can be connected to 

every PE. 

t ij is the transmission time between tasks v i and v j . 

t i j = 

e i j 

b C L i j 

(1) 

where b CLij is bandwidth between the tasks. If tasks v i and v j are 

implemented on the same PE, the transmission time will be zero. 

T2

T0

T1

T5 T6

10212

24 36

T3 T4

T7 T8 T9 T10

6
18

6 30
6

18

Fig. 2. Modified task graph. It contains four additional tasks T7-T10 (compare with 

Fig. 1 ). 

3. New problem statement 

3.1. Overview 

Embedded system must execute the designated tasks. All of 

existing design methodologies assume constant number of tasks. 

Therefore in Hardware/Software co-synthesis process the database 

includes time and cost of execution of all predicted tasks. We de- 

cided avoid this assumption -unexpected tasks can appear during 

the design process. Such a problem can be easily resolved by allo- 

cation of new components or by new tasks assignment. Therefore 

much more interesting is situation when all the system is designed 

and realized. Than it is not possible to extend it by adding new re- 

sources. We will concentrate on this problem. 

We assume that the embedded system is realized and than dur- 

ing its operation unexpected tasks appear. The tasks can also ap- 

pear after (or during) re-design, partly re-design or design re-use 

of the system. The system was not originally designed to execute 

such tasks. Allocation of those tasks can for example extend possi- 

bilities and decrease costs of smartphones. It can be also important 

in space industry for robots working on other planets (moons) in 

the solar system. In such case there is no possible to change the 

architecture after unexpected tasks appear. Sending a new robot is 

also too expensive. 

The new tasks are inserted in the task graph as separate nodes. 

Depending on the situation unexpected tasks can appear between 

the original tasks or after them. If unexpected tasks appear be- 

tween original tasks the structure of the task graph will have to 

be modified. Unexpected tasks can be split to a number of subtasks 

(which can be executed on separate resources). In such a situation 

all of the subtasks must be present in the task graph as separate 

nodes. In some rare situations, especially when a task consists of 

a few subtasks, some tasks (subtasks) will have to start theirs exe- 

cution at the same time. 

3.2. New representation 

In this work we also assume that embedded system under con- 

sideration is described by a task graphs. However the graph is 

modified during the design process. Fig. 2 presents an example of 

a modified task graph from Fig. 1. 

The Fig. 2 indicates that there are four unexpected tasks: T7, 

T8, T9 and T10. Task T5 is a predecessor of tasks: T8, T9 and T10. 

Task T3 is a predecessor of task T7. In this case all additional tasks 

are parallel and do not modify the order of previous tasks and 

structure of graph presented on Fig. 1 . We must underline that in 



Download English Version:

https://daneshyari.com/en/article/461248

Download Persian Version:

https://daneshyari.com/article/461248

Daneshyari.com

https://daneshyari.com/en/article/461248
https://daneshyari.com/article/461248
https://daneshyari.com

