

Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Exact boundary controllability of the nonlinear Schrödinger equation

Lionel Rosier^a, Bing-Yu Zhang^{b,*}

^a Institut Elie Cartan, UMR 7502 UHP/CNRS/INRIA, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France ^b Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

ARTICLE INFO

Article history: Received 29 July 2008 Revised 30 October 2008 Available online 11 December 2008

Keywords: Schrödinger equation Smoothing properties Exact boundary controllability

ABSTRACT

This paper studies the exact boundary controllability of the semilinear Schrödinger equation posed on a bounded domain $\Omega \subset \mathbb{R}^n$ with either the Dirichlet boundary conditions or the Neumann boundary conditions. It is shown that if

$$s>\frac{n}{2},$$

or

$$0 \leq s < \frac{n}{2}$$
 with $1 \leq n < 2 + 2s$.

or

$$s = 0, 1$$
 with $n = 2$,

then the systems are locally exactly controllable in the classical Sobolev space $H^{s}(\Omega)$ around any smooth solution of the cubic Schrödinger equation.

Published by Elsevier Inc.

1. Introduction

In this paper we will study the boundary control system described by the nonlinear Schrödinger equation

$$iu_t + \Delta u + \lambda |u|^2 u = 0 \tag{1.1}$$

* Corresponding author.

E-mail addresses: rosier@iecn.u-nancy.fr (L. Rosier), bzhang@math.uc.edu (B.-Y. Zhang).

^{0022-0396/\$ –} see front matter Published by Elsevier Inc. doi:10.1016/j.jde.2008.11.004

posed on a bounded domain $\Omega \subset \mathbb{R}^n$ with either the Dirichlet boundary conditions

$$u(x,t) = h(x,t), \quad x \in \partial \Omega, \tag{1.2}$$

or the Neumann boundary conditions

$$\frac{\partial u(x,t)}{\partial v} = h(x,t), \quad x \in \partial \Omega, \tag{1.3}$$

where u = u(x, t) is a complex-valued function of two real variables $x \in \Omega$ and $t \in \mathbb{R}$, the subscripts denote the corresponding partial derivatives, the parameter λ is a nonzero complex constant while the boundary value function h(x, t) is considered as a control input.

We are mainly concerned with the following exact control problem for systems (1.1)-(1.2) and (1.1)-(1.3).

Let $s \ge 0$ and T > 0 be given. For any $u_0 \in H^s(\Omega)$ and $u_1 \in H^s(\Omega)$, can one find an appropriate boundary control h such that the system (1.1)–(1.2) or system (1.1)–(1.3) admits a solution $u \in C([0, T]; H^s(\Omega))$ satisfying

$$u(x, 0) = u_0(x), \qquad u(x, T) = u_1(x)?$$

Control and stabilization problems for the Schrödinger equation have received a lot of attentions in the past decade.¹ While significant progresses have been made for the linear Schrödinger equation on its controllability and stabilizability properties (cf. e.g. [1,3,10,12,13,15–21,23] and the references therein), there are only a few results for the nonlinear Schrödinger equation, a situation in sharp contrast with other nonlinear dispersive equations, e.g. the Korteweg–de Vries equation (see [7,22,24, 25,29,31]), or the Ginzburg–Landau equation (see [6,26]). Recently, Illner, Lange and Teismann [8,9] considered internal controllability of the nonlinear Schrödinger equation posed on a finite interval $(-\pi, \pi)$:

$$iv_t + v_{xx} + \lambda |v|^2 v = f(x, t), \quad x \in (-\pi, \pi),$$
(1.4)

with the periodic boundary conditions

$$v(-\pi, t) = v(\pi, t), \quad v_{\chi}(-\pi, t) = v_{\chi}(\pi, t),$$
(1.5)

where the forcing function f = f(x, t), supported in a subinterval of $(-\pi, \pi)$, is considered as a control input. They showed that the system (1.4)–(1.5) is locally exactly controllable in the space $H_p^1(-\pi, \pi) := \{v \in H^1(-\pi, \pi): v(-\pi) = v(\pi)\}$. Later, Lange and Teismann [11] considered internal control of the nonlinear Schrödinger equation (1.4) posed on a finite interval with the homogeneous Dirichlet boundary conditions

$$v(-\pi, t) = 0, \quad v(\pi, t) = 0.$$
 (1.6)

They showed that the system (1.4)–(1.6) is locally exactly controllable in the space $H_0^1(0, \pi)$ around a special ground state of the system.

Dehman, Gérard and Lebeau [5] studied internal control and stabilization of a class of defocusing nonlinear Schrödinger equations posed on a two-dimensional compact Riemannian manifold *M* without boundary:

$$iw_t + \Delta w - |w|^2 w = f(x, t), \quad x \in M.$$
 (1.7)

¹ The readers are referred to Zuazua [32] for an excellent review on recent progresses of this subject up to 2003.

Download English Version:

https://daneshyari.com/en/article/4612632

Download Persian Version:

https://daneshyari.com/article/4612632

Daneshyari.com