
The Journal of Systems and Software 118 (2016) 101–114 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Dynamic auto-scaling and scheduling of deadline constrained service 

workloads on IaaS clouds 

Elias De Coninck 

∗, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Pieter Simoens, 
Bart Dhoedt 

Department of Information Technology, Ghent University - iMinds, Technologiepark-Zwijnaarde 15, Ghent B-9052, Belgium 

a r t i c l e i n f o 

Article history: 

Received 22 October 2015 

Revised 4 May 2016 

Accepted 5 May 2016 

Available online 6 May 2016 

Keywords: 

Cloud computing 

Deadline constrained workflow scheduling 

Dynamic resource allocation 

a b s t r a c t 

Cloud systems are becoming attractive for many companies. Rather than over-provisioning the privately 

owned infrastructure for peak demands, some of the work can be overspilled to external infrastructure to 

meet deadlines. In this paper, we investigate how to dynamically and automatically provision resources 

on the private and external clouds such that the number of workloads meeting their deadline is max- 

imized. We specifically focus on jobs consisting of multiple interdependent tasks with a priori an un- 

known structure and even adaptable at runtime. The proposed approach is model-driven: knowledge on 

the job structure on the one hand; and resource needs and scaling behavior on the other hand. Informa- 

tion is built up based on monitoring information and simulated ‘what-if’-scenarios. Using this dynami- 

cally constructed job resource model, the resources needed by each job in order to meet its deadline is 

derived. Different algorithms are evaluated on how the required resources and jobs are scheduled over 

time on the available infrastructure. The evaluation is carried out using synthetic workloads. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The availability of reliable public cloud infrastructures has 

shifted large amounts of computational work from privately owned 

clusters to these public infrastructures. However, for security con- 

cerns and cost reasons, it is often beneficial to consider a hy- 

brid cloud solution, where a privately owned system seamlessly 

interoperates with one or more external infrastructure services 

Sotomayor et al. (2009) . The normal workload and/or security sen- 

sitive jobs are executed on the private infrastructure, while peak 

loads are offloaded to the public part. The private cloud invest- 

ment cost is thus limited to the capacity needed to handle average 

workloads, without having to compromise on flexibility to respond 

to peak demands. 

In this paper we propose the design of a system supporting 

the dynamic resource allocation in multiple clouds for jobs, with 

an uncertain adaptable task structure and an unknown execution 

time, needing completion before a given deadline. We consider 

workflow-oriented jobs, consisting of multiple tasks ordered in a 

directed acyclic graph (DAG) modelling the input/output depen- 

∗ Corresponding author. 

E-mail addresses: elias.deconinck@ugent.be , elias.deconinck@intec.ugent.be 

(E. De Coninck), tim.verbelen@ugent.be (T. Verbelen), bert.vankeirsbilck@ugent.be 

(B. Vankeirsbilck), steven.bohez@ugent.be (S. Bohez), pieter.simoens@ugent.be 

(P. Simoens), bart.dhoedt@ugent.be (B. Dhoedt). 

dency. Our system will schedule jobs, dynamically adapting the 

number of allocated resources in order to meet the deadlines of 

all jobs without knowing the DAG structure itself and without any 

information of the execution time. 

The makespan of a single job depends on the number of re- 

sources allocated for this job and the number of components run- 

ning in parallel, which is decided by the framework based on the 

given deadline. All jobs are scheduled onto a deadline ordered job 

queue and the job scheduler is responsible for selecting the correct 

job(s) to execute. The main contribution of this paper is to provide 

a workflow management system that supports existing scheduling 

algorithms with learned knowledge on job type, job structure, job 

makespan and available resources. Simulating jobs for a varying 

number of resources to accelerate the acquisition of more knowl- 

edge, allows our system’s schedulers to cope with jobs having a 

priori an unknown execution time and with changes of the job’s 

internal structure over time. 

Our proposed system has been developed on top of OpenStack 

and AIOLOS Bohez et al. (2014) which allows on-demand provi- 

sioning of VMs on multiple cloud providers and distributing OSGi 

components. For each submitted job, our system follows six steps: 

1. Queue the newly submitted job onto a deadline ordered job 

queue. 

2. Look-up the knowledge in the model for the job type, allowing 

to derive the resource set required to meet the job’s deadline. 

http://dx.doi.org/10.1016/j.jss.2016.05.011 

0164-1212/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.jss.2016.05.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.05.011&domain=pdf
mailto:elias.deconinck@ugent.be
mailto:elias.deconinck@intec.ugent.be
mailto:tim.verbelen@ugent.be
mailto:bert.vankeirsbilck@ugent.be
mailto:steven.bohez@ugent.be
mailto:pieter.simoens@ugent.be
mailto:bart.dhoedt@ugent.be
http://dx.doi.org/10.1016/j.jss.2016.05.011


102 E. De Coninck et al. / The Journal of Systems and Software 118 (2016) 101–114 

{ Job Analyzer

CloudSim Simulator
Simulation 1: #WorkersA, #WorkersB, ...

Simulation 2: #WorkersA, #WorkersB, ...

Simulation ...: #WorkersA, #WorkersB, ...

Knowledge Model
Job Completion = 
f(#JobType, #WorkersA, #WorkersB
, ...)

Workflow Service

Decider

Job
Worker Worker...

2

Send executable tasks

3 Execute

4a

Analyze finished
job

5b

Update knowledge from simulated jobs
with different worker combinations

5aUpdate knowledge
from executed job

4b

Send job graph

4b

Bootstrap information
and update worker
strengths

1

Fig. 1. Functional flow to increase knowledge from monitoring information and simulations. To measure infrastructure strength worker performance is monitored and 

bootstrapped into the simulations. 

3. Allocate the required resources from an available private or 

public IaaS provider with spare capacity. 

4. Schedule the tasks of each job on these allocated resources, 

such that the deadline of the job is met. 

5. Simulation of the job execution for a number of varying re- 

sources, allowing to increase the knowledge model to improve 

future job planning. 

6. Update knowledge model with monitoring information from 

the executed and simulated jobs. 

After completion of each job, performance metrics are collected 

on the job completion time and the actual resource strength and 

usage. These metrics are used to update the knowledge model that 

the system maintains and will be used to more accurately plan and 

schedule future jobs of the same job type. Infrastructure perfor- 

mance metrics measure the capacity of VMs, which are used dur- 

ing job simulations to accurately update the knowledge model and 

to adapt for interference between VMs. Fig. 1 shows the basic flow 

of the system to build up knowledge. 

This paper is structured as follows. Practical use case examples 

are provided in Section 2 to show the need for this framework. In 

Section 3 , we describe the architecture of our framework showing 

how the major components of the system interact. Section 4 de- 

scribes the scheduling algorithms investigated in combination with 

the resource allocation strategy. Section 5 explains the simulation 

component in detail, focussing on the additions made to an ex- 

isting cloud simulation framework, needed to handle the scenar- 

ios relevant for this work. In Section 6 , we highlight a number 

of design considerations of the framework and evaluation results 

are presented in Section 7 . Section 8 discusses related work on 

scheduling workloads and criteria constrained workloads and fi- 

nally Section 9 concludes this paper. 

2. Application case studies 

2.1. Manage, fuse and serve geospatial data 

The first use case application is designed to manage, fuse and 

serve geospatial data. The goal is to efficiently store and retrieve 

geospatial data of a certain area to/from any database, service or 

file. The geographic information systems application (GIS) consists 

of three main components: 

Server: the data server serves the geospatial data and rele- 

vant meta-data from a tile repository. The tile structure and 

depth are a priori unknown because areas with more detail 

Fig. 2. A tile pyramid of Europe. A tile at a certain detail level spans exactly four 

tiles of a more detailed level. 

are represented by more tiles. The data can be accessed by 

any interested component. 

Client: the client accesses the data server to visualize a part of 

the map. 

Engine: the engine is the computational worker to efficiently 

calculate and store the input data into the tile repository. 

A tile is the unit of geospatial data for storage and retrieval. 

It represents a patch of data corresponding to a location on 

the planet. Tiles exists at different levels of detail so visu- 

alization can be optimized by the requested detail level. In 

Fig. 2 the pyramid representation of detail levels is shown. 

To implement this application on top of the framework we need 

to represent the tile pyramid as a directed graph of tasks (see 

Fig. 3 ) and group them into a single job type. To enable the frame- 

work’s functionality a Decider and one or more Workers are re- 

quired. The Worker components can be automatically scaled by our 

framework. 

GIS decider: the decider keeps track of the jobs internal struc- 

ture. Tasks are submitted to the framework in order to fork, 

render or merge tiles. It decides if for a certain detail level 

four new tasks have to be spawned or if the tile has to be 

calculated. 

Store: the store component stores tiles on the file system. 



Download English Version:

https://daneshyari.com/en/article/461279

Download Persian Version:

https://daneshyari.com/article/461279

Daneshyari.com

https://daneshyari.com/en/article/461279
https://daneshyari.com/article/461279
https://daneshyari.com

