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Given a 1-periodic real potential q ∈ L1(R/Z). We use λ0(q) to
denote the smallest 1-periodic eigenvalue of the Hill’s equation
x′′ + (λ + q(t))x = 0. Let B1[r] be the ball centered at 0 of radius r
in the L1 space L1(R/Z). It is trivial that sup{λ0(q): q ∈ B1[r]} = r
for all r � 0. Based on continuity of λ0(q) in q with the weak
topology and continuous differentiability of λ0(q) in q with the L1

norm ‖ · ‖1, we will apply scaling technique, variational approach
to extremal values in Lp balls, singular integrals and the limiting
approach as p ↓ 1 to obtain (i) λ0(q) is bounded for q in any
bounded set of (L1(R/Z),‖ · ‖1), and (ii) the minimal value

L1(r) := inf
{
λ0(q): q ∈ L1(R/Z), ‖q‖1 � r

}
= inf

{
λ0(q): q ∈ L1(R/Z), ‖q‖1 = r

}
is simply Z−1

0 (r), where Z0(x) := 2
√−x tanh(

√−x/2), x � 0. The
extremal values of the smallest Neumann eigenvalues for potentials
in L1 balls are also found explicitly.
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1. Introduction

Eigenvalues and their estimates are important in many problems in mathematics and applied sci-
ences. In this paper, we will use continuity of eigenvalues in weak topologies, some topological facts
on L p spaces, variational method, dynamical systems and singular integrals to give some deep results
on the smallest periodic eigenvalues of Hill’s operators.

Let q be a 1-periodic (real) potential from the Lebesgue space L p := L p(S1), where S1 = R/Z and
1 � p � ∞. The eigenvalue problem

x′′ + (
λ + q(t)

)
x = 0 (1.1)

has a double-sequence of eigenvalues

λ0(q) < λ1(q) � λ1(q) < · · · < λm(q) � λm(q) < · · · ,

where λm(q), λm(q) are 1-periodic eigenvalues of (1.1) for m even, and λm(q), λm(q) are 1-anti-
periodic eigenvalues of (1.1) for m odd. See [15,24], or [25] for a rotation number approach.

As a functional of potentials q ∈ L p , each of these eigenvalues is continuous in the usual L p topol-
ogy ‖q‖p := ‖q‖Lp(S1) . Moreover, since λ0(q) is simple, q ∈ (L p,‖ ·‖p) → λ0(q) is actually continuously
differentiable [13]. A recent result by the author shows that eigenvalues have very strong continuous
dependence on potentials.

Theorem 1.1. (See Zhang [27].) Let 1 � p � ∞ and m � 0. The functionals

(
L p, w p

) → R, q → λm(q), q → λm(q)

are continuous, where w p indicates the topology of weak convergence in the space (L p,‖ · ‖p) for 1 � p < ∞
and w∞ is the topology of weak∗ convergence in the space (L∞,‖ · ‖∞). Here λ0(q) is void.

For case p = ∞, see also [17]. For case 2 � p � ∞, see also [18]. For some continuity results of
solutions in weak topologies, see [11,20].

Such a strong continuity of eigenvalues has some important implications. In case 1 < p � ∞, it is
well known [23] that any bounded subset of (L p,‖·‖p) is sequentially relatively compact in (L p, w p).
By Theorem 1.1, both λm(q) and λm(q) are bounded for q in any bounded subset of (L p,‖ · ‖p). Since
bounded subsets of (L1,‖ · ‖1) may lack compactness even in w1, the boundedness of λm(q) and
λm(q) for q in bounded subsets of (L1,‖ · ‖1) cannot be deduced from Theorem 1.1 in a direct way. In
this paper, we will completely solve this for the smallest periodic eigenvalues λ0(q).

For 1 � p � ∞ and r � 0, let

B p[r] := {
q ∈ L p: ‖q‖p � r

}
be the ball of the L p space. Since we are mainly concerned with the smallest periodic eigenvalues
in this paper, for simplicity, we write λ0(q) as λ0(q) for q ∈ L p . Let us define the following extremal
values

Lp(r) := inf
q∈B p [r]λ0(q), Mp(r) := sup

q∈B p [r]
λ0(q). (1.2)

For the maximal values Mp(r), let us recall a trivial upper bound of λ0(q)

λ0(q) � −
1∫

0

q(t)dt, q ∈ L p . (1.3)
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