
The Journal of Systems and Software 118 (2016) 234–250

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Evaluating refactorings for spreadsheet models

Jácome Cunha

a , João Paulo Fernandes b , Pedro Martins c , Jorge Mendes c , Rui Pereira

c , ∗,
João Saraiva

c

a NOVA LINCS, DI, FCT, Universidade Nova de Lisboa, Portugal
b LISP - RELEASE, Universidade da Beira Interior & HASLab/INESC TEC, Portugal
c Universidade do Minho & HASLab/INESC TEC, Portugal

a r t i c l e i n f o

Article history:

Received 1 June 2015

Revised 18 December 2015

Accepted 18 April 2016

Available online 3 May 2016

Keywords:

Software refactoring

Model-driven engineering

Spreadsheets

Empirical study,

a b s t r a c t

Software refactoring is a well-known technique that provides transformations on software artifacts with

the aim of improving their overall quality.

We have previously proposed a catalog of refactorings for spreadsheet models expressed in the

ClassSheets modeling language, which allows us to specify the business logic of a spreadsheet in an

object-oriented fashion.

Reasoning about spreadsheets at the model level enhances a model-driven spreadsheet environment

where a ClassSheet model and its conforming instance (spreadsheet data) automatically co-evolves af-

ter applying a refactoring at the model level. Research motivation was to improve the model and its

conforming instance: the spreadsheet data.

In this paper we define such refactorings using previously proposed evolution steps for models and in-

stances.

We also present an empirical study we designed and conducted in order to confirm our original intuition

that these refactorings have a positive impact on end-user productivity, both in terms of effectiveness

and efficiency.

The results are not only presented in terms of productivity changes between refactored and non-

refactored scenarios, but also the overall user satisfaction, relevance, and experience.

In almost all cases the refactorings improved end-users productivity. Moreover, in most cases users were

more engaged with the refactored version of the spreadsheets they worked with.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Software refactoring (Fowler, 1999) is the process of modifying

the source code of software programs without changing their se-

mantics. That is to say that while improvements are expected on

the non-functional attributes of a piece of software, it is mandatory

that its associated functional attributes are not affected by refactor-

ings.

Improvements can be achieved, for example, by transforming

the software into a new version with reduced complexity, or with

added expressiveness in either the code or its model (or both), or

∗ Corresponding author.

E-mail addresses: jacome@fct.unl.pt (J. Cunha), jpf@di.ubi.pt (J. Paulo Fernan-

des), prmartins@di.uminho.pt (P. Martins), jorgemendes@di.uminho.pt (J. Mendes),

ruipereira@di.uminho.pt (R. Pereira), jas@di.uminho.pt (J. Saraiva).

with diminished overall size (fewer methods, classes, or lines of

code).

In practice, a significant set of automated refactorings is usually

available for a concrete programming language. This reduces the

overall programming effort, since due to the improved quality of

refactored code traditional programming tasks become simpler and

can be implemented faster (Fowler, 1999).

Because of its generic applicability, code refactoring has

been studied in different contexts, ranging from software source

code (Fowler, 1999; Mens and Tourwe, 2004) or software mod-

els (Einarsson and Neukirchen, 2012), to spreadsheets (Badame and

Dig, 2012). We have ourselves proposed (Cunha et al., 2014) a se-

ries of refactorings for ClassSheets (Engels and Erwig, 2005).

ClassSheets are a high level, object-oriented modeling language

for spreadsheets. Integrating concepts from the Unified Modeling

Language (UML), this language provides a modular and abstract

http://dx.doi.org/10.1016/j.jss.2016.04.043

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.04.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.04.043&domain=pdf
mailto:jacome@fct.unl.pt
mailto:jpf@di.ubi.pt
mailto:prmartins@di.uminho.pt
mailto:jorgemendes@di.uminho.pt
mailto:ruipereira@di.uminho.pt
mailto:jas@di.uminho.pt
http://dx.doi.org/10.1016/j.jss.2016.04.043

J. Cunha et al. / The Journal of Systems and Software 118 (2016) 234–250 235

methodology for dealing with spreadsheets, and namely to spec-

ify and maintain their business logic.

The appearance of this modeling language allowed us to de-

velop an environment where concrete spreadsheets (or spread-

sheet instances) are automatically derived from, and main-

tained together with abstract specifications (or spreadsheet mod-

els) (Engels and Erwig, 2005; Cunha et al., 2012c). This means that

an evolution step on either the spreadsheet instance or its model is

automatically propagated to the associated artifact, ensuring their

consistency at all times (Cunha et al., 2012b).

In such a model-driven setting, we have shown (Cunha et al.,

2015) that end-users are more efficient (that is, they complete

equivalent tasks in less time) and effective (that is, they commit

less errors) when they use a model-driven spreadsheet over regu-

lar spreadsheet data. In fact, that paper presents an empirical study

showing that errors can be prevented by carefully reasoning about,

and designing, a concise model, instead of doing so with a poten-

tially large spreadsheet. This confirms an earlier idea that differ-

ent, more refined, representations (or models, even though these

representations are all at what we consider here the spreadsheet

instance level) for data in a spreadsheet can improve productivity

of end users (Beckwith et al., 2011).

In this paper we revise the refactorings proposed in Cunha et al.

(2014) with the goal of improving the overall quality characteristics

of ClassSheet models. The proposed refactorings are: extract class,

inline class, move attribute, move formula , and remove middle man . 1

Moreover, we have specified these refactorings using our bidi-

rectional transformational system previously introduced in Cunha

et al. (2012b). This is the first contribution of this paper.

Later, we also assess in practice the refactorings catalog

of (Cunha et al., 2014). With our work, we seek to find the answers

to the following research questions:

(i) Do the spreadsheet instances (automatically) derived from

refactored ClassSheet models allow end users to be more ef-

ficient than they would be if manipulating the instances de-

rived from the corresponding original (non-refactored) mod-

els?

(ii) Do the spreadsheet instances derived from refactored

ClassSheet models allow end users to be more effective than

they would be if manipulating the instances derived from

the corresponding original models?

(iii) Do spreadsheet users have a better experience working with

the spreadsheet instances derived from refactored ClassSheet

models instead of working with the instances derived from

the corresponding original models?

That is to say that we propose to evaluate ClassSheet refac-

tored models by analyzing the productivity in their instances, since

these are standard spreadsheets, a software artifact that is used

daily by millions of end users worldwide. We analyze the effective-

ness and efficiency aspects of productivity, and also by measuring

the overall experience of their users. With this goal in mind, we

have designed and conducted an empirical study with spreadsheet

end users, being this study, as well as the analysis of its results,

the second and main contribution of this paper. In this study, we

analyzed the quantitative and qualitative differences of the usage

of (already) refactored spreadsheet models versus non-refactored

spreadsheet models from an end-user’s perspective.

The lessons learned from the results of our study are very

promising. Through a series of statistical experiments, we found

evidence that refactorings do allow improvements of either the

efficiency or the effectiveness of its instances (or both), with the

1 As the names suggest, and since ClassSheets resemble the object-oriented (OO)

paradigm, the refactorings we proposed are based on the ones available in the OO

realm.

exception of a single refactoring from the refactoring catalog pro-

posed in (Cunha et al., 2014).

Finally, we also gathered from the participants of our study

feedback of a more qualitative nature. While the analysis of such

feedback is exposed to a certain degree of subjectiveness, we be-

lieve that most of it provides further evidence that the refactorings

of Cunha et al. (2014) allow the improvement of other spreadsheet

characteristics such as readability, understandability or overall user

satisfaction.

This paper is organized as follows . We start by introducing in

Section 2 what model-driven spreadsheets are. In Section 3 we re-

vise the previously introduced refactorings. In Section 4 we present

the empirical validation of the refactorings proposed. Related work

is presented in Section 5 and conclusions and future work in

Section 6 .

2. Model-driven spreadsheets

Engels and Erwig (2005) introduced the language ClassSheet to

leverage handling spreadsheets to a more conceptual level. In a

model-driven setting, a ClassSheet is the model and the spread-

sheet data the corresponding instance. Indeed ClassSheets are

more abstract than spreadsheets themselves, smaller, and easier

to reason about. This language, which has a textual and a vi-

sual/graphical representation, has been embedded in spreadsheets

themselves (Cunha et al., 2011). In such embedding the visual rep-

resentation was used. Fig. 1 shows an embedded ClassSheet model

of a small warehouse for a bar/coffee shop distribution (the num-

bered areas will be referenced in Section 3). Note this spread-

sheet does not represent the actual data as it is shown in a second

spreadsheets in Fig. 2 .

On the top half (rows 1 through 6), we have three classes:

Product, Client , and Order. Product (cell range A3 : B5 and J3 : K5)
contains a product ID , its Name , Unit Price , and amount in

Stock , while expanding vertically (indicated by the ellipsis on

row 5). Client (cell range C1 : G2) contains the client’s Name , along

with his/her Address , City , and Country , and expands hori-

zontally (indicated by the ellipsis on column I). The Order (cell

range C3 : H5) is a relationship class which arises due to the join-

ing of a Product and a Client . This class contains a Quantity
value of the product, an Order Date , a product Category , a

Sold Price formula to calculate the price, and the warehouse’s

ToSellprice (expected price) for selling all of that product.

The ID in the Client class references their Contact Info , a class

on the bottom half (cell range F8 : H11), which has the client’s

Telephone and Email . The Seller ’s ID in the Order class ref-

erences the Seller class (cell range A8 : B11) which references the

SellInf class (cell range C8 : E11) containing the Name , Cell num-

ber, and Home number of the seller. These last three classes ex-

pand vertically.

Fig. 2 illustrates an instance of the model from Fig. 1 . Start-

ing from the bottom left corner, in a counter-clockwise direction,

we can see instances for the Seller , SellInf , ContactInf ,
Order , two instances of Client (with the names Tiago C. and

Marco C.) and four instances of Product .
Using ClassSheets we have created MDSheet (Cunha et al.,

2012c), a framework that provides a bidirectional model-driven

spreadsheet environment. The techniques and language described

in that work allow transformations/evolutions from models to be

automatically applied to the corresponding instances and vice-

versa, as illustrated in Fig. 3 .

Given a spreadsheet conforming to a ClassSheet, the user can

evolve the model through an operation of the set Op M

, or the in-

stance through an operation of Op D . The performed operation on

the model/instance is then automatically transformed into the cor-

responding set of operations on the instance/model using the to

Download English Version:

https://daneshyari.com/en/article/461286

Download Persian Version:

https://daneshyari.com/article/461286

Daneshyari.com

https://daneshyari.com/en/article/461286
https://daneshyari.com/article/461286
https://daneshyari.com

