
The Journal of Systems and Software 118 (2016) 288–296

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Effect of developer collaboration activity on software quality in two

large scale projects

Bora Çaglayan

∗, Ay ̧s e Ba ̧s ar Bener

Mechanical and Industrial Engineering Department, Ryerson University, Toronto M5B 2K3, Canada

a r t i c l e i n f o

Article history:

Received 23 April 2015

Revised 20 March 2016

Accepted 21 March 2016

Available online 31 March 2016

Keywords:

Collaboration networks

Developer collaboration

Software quality

Human factor in software engineering

a b s t r a c t

Developers work together during software development and maintenance to resolve issues and imple-

ment features in large software projects. The structure of their development collaboration activity may

have impact on the quality of the final product in terms of higher number of defects. In this paper, we

aim to understand the effect of collaboration on the defect proneness software. We model the collab-

oration of developers as an undirected network. We extract the centrality of the developers from the

collaboration network using different measures that quantifies the importance of the nodes. We analyze

the defect inducing and fixing data of the developers in two large software projects. Our findings in this

study can be summarized as follows: (a) Centrality and source code change activity of developers in the

collaboration network may change their defect induction rates i.e. the defect proneness of their change

sets, (b) Contrary to the common perception, more experienced people have relatively higher defect in-

duction rates.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Development and maintenance of large software is beyond the

capacity of single person. Therefore most of the large software

are built through the collaboration of many developers. We can

observe the effort of individuals easily by mining source code

repositories.

Coordination and management of the developers who may

be working at distributed locations is a challenging activity. It

may not be possible to observe collaborations directly due to

unforeseen dependencies among the modules of the software in a

given project. Lastly, changes in the workforce during development

disrupt the structure of the collaboration. Dynamic developer

collaboration structure can be extracted accurately only by mining

the version control systems and analyzing the activity of the de-

velopers. The structure of the developer collaboration may depend

on the architecture of the software, the organizational structure

and the planned collaboration structure may change during the

evolution of the software.

Collaboration structure of developers may have a complex

relation with the quality of the software. In theory, cohesive

teams with low inter-dependencies between each other are more

likely to reduce their defect density Brooks (1995) . However, on

∗ Corresponding author. Tel.: +16479093489.

E-mail addresses: bora.caglayan@ryerson.ca (B. Çaglayan), ayse.bener@ryerson.ca

(A.B. Bener).

the source code level, collaboration network structure may be

significantly different than the organizational structure Caglayan

et al. (2013) . Code level collaboration can be traced by mining

the source code repositories. The experienced people among the

developers tend to collaborate with more people over time. On

the other hand, a nearly complete collaboration network may be a

sign of collective code ownership advocated by the proponents of

the agile methodologies (Beck, 20 0 0).

Empirically, it has previously been observed that collaboration

structure may be significantly different than the organizational

structure. Cataldo et al. studied the effect of team structure on

software quality previously (Cataldo and Herbsleb, 2010), (Caglayan

et al., 2013). They defined teams based on the collaboration ac-

tivity. In this aspect, one of their conclusions was the dramatic

differences between the organizational team structure and the

actual code-level collaboration structure.

In this paper, we have analyzed the relation of the collabora-

tion network of the developers and the quality of the software

modules. In our study, we assumed that the quality of a software

module can be estimated by analyzing their defect proneness.

We modeled software quality at change level by inspecting defect

inducing and defect fixing changes. The research question that we

address by this empirical study is as follows:

• Research question: What is the effect of development collabo-

ration activity on the software quality?

To answer the research question, we extracted the collaboration

activity and change categories for a large commercial enterprise

http://dx.doi.org/10.1016/j.jss.2016.03.055

0164-1212/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2016.03.055
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.03.055&domain=pdf
mailto:bora.caglayan@ryerson.ca
mailto:ayse.bener@ryerson.ca
http://dx.doi.org/10.1016/j.jss.2016.03.055

B. Çaglayan, A.B. Bener / The Journal of Systems and Software 118 (2016) 288–296 289

software and open source Eclipse Project. We examined the

effect of collaboration on the software quality on change level.

We grouped changes into defect inducing changes based on the

methodology proposed by Śliwerski et al. (2005) , defect fixing

changes and normal changes. We modeled the collaboration activ-

ity as a collaboration network of developers based on co-work on

similar software modules. Then, we checked the relation between

the defect-inducing and defect-fixing activities and developer

collaboration by using collaboration network metrics.

The contributions of this study are as follows:

1. We empirically studied the collaboration activity for two

large-scale software.

2. We identified the effect of the centrality of developers on

defect induction rates.

The structure of the rest of the paper is as follows: In the

related work section we overview the relevant literature. In the

methodology section we define our dataset, data extraction pro-

cess and the empirical study setup. In the results section we

present our empirical findings. Afterwards, we show the threats to

the validity of the findings. Finally, in the conclusion section we

present a summary of the important results and possible future

work on this topic.

2. Related work

Programmer collaboration network and the effect of program-

mer collaboration on software quality has been investigated by

several research groups. Herbsleb et al. investigated the relations

between distributed software teams, increased software develop-

ment costs and reduced productivity (Herbsleb and Mockus, 2003).

He also examined if works in different sites can be interdependent

and how may the interdependence diminish over time. The data

from two multi-site companies have been used as input. Data

was collected by surveys and from change management systems.

Majority of the respondents point to difficulty of communication

between sites. The two surveyed companies could not reduce

interdependence of tasks between different sites in the projects.

As a result they found that teams located at different sites have

reduced overall efficiency by examining the software changes.

In a recent paper, Joblin et al. analyzed the developer networks

of ten open source software Joblin et al. (2015) . In this study, they

have confirmed with 53 developers that the developer networks

extracted from source code repositories automatically can model

the collaboration.

Caglayan et al. studied the natural team formation in software

projects by investigating the evolution of the collaboration net-

work over time during a release of a large-scale project (Caglayan

et al., 2013). They found that collaboration teams among the

developers may form over time independent of the formal team

structure of the organization.

Another notable paper in this area is a recent paper by Betten-

burg et al. (Bettenburg, 2012). Bettenburg et al. analyzed the issue

level collaboration information in the Eclipse project. They checked

the relation of the defect proneness of code with the collaboration

and extracted several metrics to build a logistic regression model

to predict the defect prone modules. They found that when a part

of the software module is discussed in the issue management sys-

tem by developers, the likelihood of a post-release defect increases.

Programmer collaboration has been used previously to build

metric sets for the defect prediction problem. Meneely et al.

(Meneely et al., 2008) (Shin et al., 2011), Pinzger et al. Pinzger

et al. (2008) and Alhassan et al. (Alhassan et al., 2010) tested the

merits of the local collaboration metrics in the defect prediction

problem. They found that the local collaboration metrics forms

a strong alternative to the other well-established metric sets.

Nagappan et al. proposed organizational metrics to predict the

defect proneness of software (Nagappan et al., 2008). In their

work, Nagappan et al. extracted metrics to understand the re-

lations between organizational structure of a software company

and the defect proneness of software modules.One example of the

metrics they used is the percentage of organizational units which

participated in the development of a software module.

Although the collaboration network idea has been used in

multiple studies, to the best of our knowledge the effect of

collaboration on software quality has not been studied in detail

previously. Our work is different than the previous work that

investigated the relation between developer collaboration and

software quality in several ways: (1) We investigate the relation

between developer collaboration and software quality on source

code change level. Source code changes can be used to highlight

the risky points in the software real-time. (2) We check the defect

induction rates and its relation with developer collaboration for

two large software, (3) We analyze the possible reasons of the

effect of collaboration on software quality.

3. Methodology

3.1. Dataset

In our research, we used a large scale commercial software

as well as a large scale open source software as a data source to

check the effects of different licensing paradigms on our results.

Enterprise software

The first dataset that we have used is a commercial large-scale

enterprise software product. The enterprise software product has

a 20 year old code base. We examined a 500 kLOC part of the

product that constitutes a set of architectural functionality of the

project as the dataset. The programming languages of the project

are C and C ++ . The software is developed by an international

group of developers in five different countries.

Eclipse project

Eclipse project is a widely used multi-language software devel-

opment platform written mainly in the Java programming language

(Eclipse project web site, 2013). Its source code is forked from IBM

VisualAge IDE. The project was made open-source in November

2001 and it was licensed initially under creative-commons license

and later Eclipse Public License. Both of these licences are com-

patible with the FSF standards for open source licences. In our

study we used the base IDE functionality component of Eclipse to

construct the dataset (eclipse.platform.runtime). Within the span

of our examination of the Eclipse project, most of the developers

were IBM employees. According to (Capra et al., 2008) this catego-

rizes Eclipse as a strictly governed commercial open source project.

3.2. Data extraction

We extracted the change history of the Eclipse and the Enter-

prise projects. Changes for the Eclipse Project. We used function

change level granularity for the Enterprise software since it con-

tained very large source code files ranging between 1 kLOC up to

15 kLOC. On the other hand, after a manual inspection we found

that there is a lot of getter/setter functions in Eclipse without

much content. We decided to use file change level granularity

in Eclipse and function change level granularity in the Enterprise

software for these reasons. The Enterprise Project had 6548

function changes during one major release while Eclipse project

had 41,140 source code file changes between January 2001 and

September 2013.

Download English Version:

https://daneshyari.com/en/article/461289

Download Persian Version:

https://daneshyari.com/article/461289

Daneshyari.com

https://daneshyari.com/en/article/461289
https://daneshyari.com/article/461289
https://daneshyari.com

